Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ultrasound Med Biol ; 50(6): 920-926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521695

RESUMO

OBJECTIVE: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive therapy to lesion brain tissue, used clinically in patients and pre-clinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. METHODS: The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n = 7 lesions) was compared to a craniectomy approach (n = 22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using histologic methods from a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. RESULTS: Comparing a motorized adjustment system (∼1 mm precision, n = 17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n = 14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. CONCLUSIONS: The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.


Assuntos
Fórnice , Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Ratos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fórnice/diagnóstico por imagem , Fórnice/cirurgia , Ratos Sprague-Dawley , Transdutores , Cirurgia Assistida por Computador/métodos , Masculino , Imageamento por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos
2.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905085

RESUMO

Objective: High-intensity magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive therapy to lesion brain tissue, used clinically in patients and preclinically in several animal models. Challenges with focused ablation in rodent brains can include skull and near-field heating and accurately targeting small and deep brain structures. We overcame these challenges by creating a novel method consisting of a craniectomy skull preparation, a high-frequency transducer (3 MHz) with a small ultrasound focal spot, a transducer positioning system with an added manual adjustment of ∼0.1 mm targeting accuracy, and MR acoustic radiation force imaging for confirmation of focal spot placement. Methods: The study consisted of two main parts. First, two skull preparation approaches were compared. A skull thinning approach (n=7 lesions) was compared to a craniectomy approach (n=22 lesions), which confirmed a craniectomy was necessary to decrease skull and near-field heating. Second, the two transducer positioning systems were compared with the fornix chosen as a subcortical ablation target. We evaluated the accuracy of targeting using a high-frequency transducer with a small ultrasound focal spot and MR acoustic radiation force imaging. Results: Comparing a motorized adjustment system (∼1 mm precision, n=17 lesions) to the motorized system with an added micromanipulator (∼0.1 mm precision, n=14 lesions), we saw an increase in the accuracy of targeting the fornix by 133%. The described work allows for repeatable and accurate targeting of small and deep structures in the rodent brain, such as the fornix, enabling the investigation of neurological disorders in chronic disease models.

3.
Magn Reson Imaging ; 96: 126-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496098

RESUMO

Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.


Assuntos
Neoplasias da Mama , Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Humanos , Feminino , Temperatura , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Termometria/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagens de Fantasmas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia
4.
Int J Hyperthermia ; 39(1): 1387-1396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36336401

RESUMO

PURPOSE: To develop and evaluate susceptibility corrected 2D proton resonance frequency (PRF)-based magnetic resonance (MR)-thermometry for the accurate assessment of the ablation zone of hepatic microwave ablation (MWA). METHODS AND MATERIALS: Twelve hepatic MWA were performed in five LEWE minipigs with human-like fissure-free liver. Temperature maps during ablation of PRF-based MR-thermometry were corrected by modeling heat induced susceptibility changes. Ablation zones were determined using cumulative equivalent minutes at 43 °C (CEM43) as tissue damage model. T1 weighted (w) post-ablation contrast-enhanced (CE) MR-imaging and manually segmented postmortem histology were used for validation. The agreement of uncorrected (raw) and susceptibility corrected (corr) MR-thermometry with T1w post-ablation CE MR-imaging and histology was evaluated. The Wilcoxon-signed rank test and Bland-Altman analysis were applied. RESULTS: With the susceptibility corrected MR-thermometry a significantly increased dice coefficient (raw: 77% vs. corr: 83%, p < 0.01) and sensitivity (raw: 72% vs. corr: 82%, p < 0.01) was found for the comparison to T1w-CE imaging as well as histopathology (dice coefficients: raw: 76% vs. corr: 79%, p < 0.001; sensitivity: raw: 72% vs. corr: 74%, p < 0.001). While major axis length was significantly increased (7.1 mm, p < 0.001) and minor axis length significantly decreased (2.2 mm, p < 0.001) in uncorrected MR-thermometry compared to T1w-CE MR-imaging, no significant bias was found after susceptibility correction. CONCLUSION: Using susceptibility corrected 2D PRF-based MR-thermometry to predict the ablation zones of hepatic MWA provided a good agreement in comparison to T1w post-ablation CE MR-imaging and histopathology.

5.
Commun Eng ; 12022.
Artigo em Inglês | MEDLINE | ID: mdl-36700241

RESUMO

The soft-tissue imaging capabilities of magnetic resonance imaging (MRI) combined with high precision robotics has the potential to improve the precision and safety of a wide range of image-guided medical procedures. However, functional MRI-compatible robotics have not yet been realized in part because conventional electromagnetic servomotors can become dangerous projectiles near the strong magnetic field of an MRI scanner. Here we report an electromagnetic servomotor constructed from non-magnetic components, where high-torque and controlled rotary actuation is produced via interaction between electrical current in the servomotor armature and the magnetic field generated by the superconducting magnet of the MRI scanner itself. Using this servomotor design, we then build and test an MRI-compatible robot which can achieve the linear forces required to insert a large-diameter biopsy instrument in tissue during simultaneous MRI. Our electromagnetic servomotor can be safely operated (while imaging) in the patient area of a 3 Tesla clinical MRI scanner.

6.
Med Phys ; 48(9): e772-e806, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34224149

RESUMO

Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imagem por Ressonância Magnética Intervencionista , Cirurgia Assistida por Computador , Imageamento por Ressonância Magnética , Estados Unidos
7.
Med Phys ; 48(9): 4719-4729, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34265109

RESUMO

PURPOSE: Develop and evaluate the effectiveness of a T1-based correction method for errors in proton resonant frequency shift thermometry due to non-local field effects caused by heating in fatty breast tissues. METHODS: Computational models of human breast tissue were created by segmenting MRI data from a healthy human volunteer. MR-guided focused ultrasound (MRgFUS) heating and MR thermometry measurements were simulated in several locations in the heterogeneous segmented breast models. A T1-based correction method for PRF thermometry errors was applied and the maximum positive and negative errors and the root mean squared error (RMSE) in a region around each heating location was evaluated with and without correction. The method uses T1 measurements to estimate the temperature change in fatty tissues and correct for their influence. Experimental data from a heating study in cadaver breast tissue were analyzed, and the expected PRFS error computed. RESULTS: The simulated MR thermometry had maximum single voxel errors ranging between 10% and 18% when no correction was applied. Applying the correction led to a considerable improvement, lowering the maximum error range to 2%-5%. The 5th to 95th percentile interval of the temperature error distribution was also lowered with correction, from approximately 3.5 to 1°C. This correction worked even when T1 times were uniformly raised or lowered by 5%-10%. The experimental data showed predicted errors of 15%. CONCLUSIONS: This simulation study demonstrates that the T1-based correction method reduces MR thermometry errors due to non-local effects from heating in fatty tissues, potentially improving the accuracy of thermometry measurements during MRgFUS treatments. The presented correction method is reliant on having a patient-specific 3D model of the breast, and may be limited by the accuracy of the fat temperatures which in turn may be limited by noise or bias present in the T1 measurements.


Assuntos
Prótons , Termometria , Mama/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Ultrassonografia
8.
Phys Med Biol ; 66(5)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33352538

RESUMO

A magnetic resonance (MR) shear wave elastography technique that uses transient acoustic radiation force impulses from a focused ultrasound (FUS) transducer and a sinusoidal-shaped MR displacement encoding strategy is presented. Using this encoding strategy, an analytic expression for calculating the shear wave speed in a heterogeneous medium was derived. Green's function-based simulations were used to evaluate the feasibility of calculating shear wave speed maps using the analytic expression. Accuracy of simulation technique was confirmed experimentally in a homogeneous gelatin phantom. The elastography measurement was compared to harmonic MR elastography in a homogeneous phantom experiment and the measured shear wave speed values differed by less than 14%. This new transient elastography approach was able to map the position and shape of inclusions sized from 8.5 to 14 mm in an inclusion phantom experiment. These preliminary results demonstrate the feasibility of using a straightforward analytic expression to generate shear wave speed maps from MR images where sinusoidal-shaped motion encoding gradients are used to encode the displacement-time history of a transiently propagating wave-packet. This new measurement technique may be particularly well suited for performing elastography before, during, and after MR-guided FUS therapies since the same device used for therapy is also used as an excitation source for elastography.


Assuntos
Simulação por Computador , Técnicas de Imagem por Elasticidade , Acústica , Técnicas de Imagem por Elasticidade/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
9.
IEEE Trans Biomed Eng ; 68(3): 893-904, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32784128

RESUMO

OBJECTIVE: This paper presents and evaluates a breast-specific magnetic resonance guided focused ultrasound (MRgFUS) system. A first-in-human evaluation demonstrates the novel hardware, a sophisticated tumor targeting algorithm and a volumetric magnetic resonance imaging (MRI) protocol. METHODS: At the time of submission, N = 10 patients with non-palpable T0 stage breast cancer have been treated with the breast MRgFUS system. The described tumor targeting algorithm is evaluated both with a phantom test and in vivo during the breast MRgFUS treatments. Treatments were planned and monitored using volumetric MR-acoustic radiation force imaging (MR-ARFI) and temperature imaging (MRTI). RESULTS: Successful technical treatments were achieved in 80 % of the patients. All patients underwent the treatment with no sedation and 60 % of participants had analgesic support. The total MR treatment time ranged from 73 to 114 minutes. Mean error between desired and achieved targeting in a phantom was 2.9 ±1.8 mm while 6.2 ±1.9 mm was achieved in patient studies, assessed either with MRTI or MR-ARFI measurements. MRTI and MR-ARFI were successful in 60 % and 70 % of patients, respectively. CONCLUSION: The targeting accuracy allows the accurate placement of the focal spot using electronic steering capabilities of the transducer. The use of both volumetric MRTI and MR-ARFI provides complementary treatment planning and monitoring information during the treatment, allowing the treatment of all breast anatomies, including homogeneously fatty breasts.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Protocolos Clínicos , Humanos , Imagens de Fantasmas , Ultrassonografia
10.
Int J Hyperthermia ; 37(1): 283-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32204632

RESUMO

Purpose: To develop and characterize a tissue-mimicking phantom that enables the direct comparison of magnetic resonance (MR) and ultrasound (US) imaging techniques useful for monitoring high-intensity focused ultrasound (HIFU) treatments. With no additions, gelatin phantoms produce little if any scattering required for US imaging. This study characterizes the MR and US image characteristics as a function of psyllium husk concentration, which was added to increase US scattering.Methods: Gelatin phantoms were constructed with varying concentrations of psyllium husk. The effects of psyllium husk concentration on US B-mode and MR imaging were evaluated at nine different concentrations. T1, T2, and T2* MR maps were acquired. Acoustic properties (attenuation and speed of sound) were measured at frequencies of 0.6, 1.0, 1.8, and 3.0 MHz using a through-transmission technique. Phantom elastic properties were evaluated for both time and temperature dependence.Results: Ultrasound image echogenicity increased with increasing psyllium husk concentration while quality of gradient-recalled echo MR images decreased with increasing concentration. For all phantoms, the measured speed of sound ranged between 1567-1569 m/s and the attenuation ranged between 0.42-0.44 dB/(cm·MHz). Measured T1 ranged from 974-1051 ms. The T2 and T2* values ranged from 97-108 ms and 48-88 ms, respectively, with both showing a decreasing trend with increased psyllium husk concentration. Phantom stiffness, measured using US shear-wave speed measurements, increased with age and decreased with increasing temperature.Conclusions: The presented dual-use tissue-mimicking phantom is easy to manufacture and can be used to compare and evaluate US-guided and MR-guided HIFU imaging protocols.


Assuntos
Gelatina/química , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas/normas , Psyllium/química , Ultrassonografia/métodos , Humanos
11.
Artigo em Inglês | MEDLINE | ID: mdl-32070952

RESUMO

This article presents corrections to J. Bercoff et al., "The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, no. 11, pp. 1523-1536, Nov. 2004, and J. Bercoff et al., "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, no. 4, pp. 396-409, Apr. 2004.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34867110

RESUMO

Phased array (PA) receive coils are built such that coil elements approximate independent antenna behavior. One method of achieving this goal is to use an available decoupling method to decouple adjacent coil elements. The purpose of this work was to compare the relative performance of two decoupling methods as a function of variation in sample load. Two PA receive coils with 5 channels (5-ch) each, equal outer dimensions, and formed on 12 cm diameter cylindrical phantoms of conductivities 0.3, 0.6, and 0.9 S/m were evaluated for relative signal-to-noise ratio (SNR) and parallel imaging performance. They were only tuned and matched to the 0.6 S/m phantom. Simulated and measured axial, sagittal, and coronal 5-ch PA coil SNR ratios were compared by dividing the overlap by the capacitive decoupled coil SNR results. Issues related to the selection of capacitor values for the two decoupling methods were evaluated by taking the ratio of the match and tune capacitors for large and small 2 channel (2-ch) PA coils. The SNR ratios showed that the SNR of the two decoupling methods were very similar. The inverse geometry-factor maps showed similar but better overall parallel imaging performance for the capacitive decoupled method. The quotients for the 2-ch PA coils' maximum and minimum capacitor value ratios are 3.28 and 1.38 for the large and 3.28 and 2.22 for the small PA. The results of this paper demonstrate that as the sample load varies, the capacitive and overlap decoupling methods are very similar in relative SNR and this similarity continues for parallel imaging performance. Although, for the 5-ch coils studied, the capacitive decoupling method has a slight SNR and parallel imaging advantage and it was noted that the capacitive decoupled coil is more likely to encounter unbuildable PA coil configurations.

13.
Lasers Surg Med ; 51(3): 286-300, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30645017

RESUMO

OBJECTIVES: To develop, test and evaluate improved 2D and 3D protocols for proton resonance frequency shift magnetic resonance temperature imaging (MRTI) of laser interstitial thermal therapy (LITT). The objective was to develop improved MRTI protocols in terms of temperature measurement precision and volume coverage compared to the 2D MRTI protocol currently used with a commercially available LITT system. METHODS: Four different 2D protocols and four different 3D protocols were investigated. The 2D protocols used multi-echo readouts to prolong the total MR sampling time and hence the MRTI precision, without prolonging the total acquisition time. The 3D protocols provided volumetric thermometry by acquiring a slab of 12 contiguous slices in the same acquisition time as the 2D protocols. The study only considered readily available pulse sequences (Cartesian 2D and 3D gradient recalled echo and echo planar imaging [EPI]) and methods (partial Fourier and parallel imaging) to ensure wide availability and rapid clinical implementation across vendors and field strengths. In vivo volunteer studies were performed to investigate and compare MRTI precision and image quality. Phantom experiments with LITT heating were performed to investigate and compare MRTI precision and accuracy. Different coil setups were used in the in vivo studies to assess precision differences between using local (such as flex and head coils) and non-local (i.e., body coil) receive coils. Studies were performed at both 1.5 T and 3 T. RESULTS: The improved 2D protocols provide up to a factor of two improvement in the MRTI precision in the same acquisition time, compared to the currently used clinical protocol. The 3D echo planar imaging protocols provide comparable precision as the currently used 2D clinical protocol, but over a substantially larger field of view, without increasing the acquisition time. As expected, local receive coils perform substantially better than the body coil, and 3 T provides better MRTI accuracy and precision than 1.5 T. 3D data can be zero-filled interpolated in all three dimensions (as opposed to just two dimensions for 2D data), reducing partial volume effects and measuring higher maximum temperature rises. CONCLUSIONS: With the presented protocols substantially improved MRTI precision (for 2D imaging) or greatly improved field of view coverage (for 3D imaging) can be achieved in the same acquisition time as the currently used protocol. Only widely available pulse sequences and acquisition methods were investigated, which should ensure quick translation to the clinic. Lasers Surg. Med. 51:286-300, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Hipertermia Induzida , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Termometria/métodos , Protocolos Clínicos , Imagem Ecoplanar , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
Magn Reson Med ; 81(5): 3153-3167, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663806

RESUMO

PURPOSE: To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS: ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS: MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION: MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.


Assuntos
Acústica , Técnicas de Imagem por Elasticidade , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Bovinos , Modelos Animais , Movimento (Física) , Imagens de Fantasmas , Resistência ao Cisalhamento , Estresse Mecânico , Transdutores
15.
Magn Reson Med ; 81(2): 1104-1117, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30257059

RESUMO

PURPOSE: To implement and evaluate an efficient multiple-point MR acoustic radiation force imaging pulse sequence that can volumetrically measure tissue displacement and evaluate tissue stiffness using focused ultrasound (FUS) radiation force. METHODS: Bipolar motion-encoding gradients were added to a gradient-recalled echo segmented EPI pulse sequence with both 2D and 3D acquisition modes. Multiple FUS-ON images (FUS power > 0 W) were interleaved with a single FUS-OFF image (FUS power = 0 W) on the TR level, enabling simultaneous measurements of volumetric tissue displacement (by complex subtraction of the FUS-OFF image from the FUS-ON images) and proton resonance frequency shift MR thermometry (from the OFF image). Efficiency improvements included partial Fourier acquisition, parallel imaging, and encoding up to 4 different displacement positions into a single image. Experiments were performed in homogenous and dual-stiffness phantoms, and in ex vivo porcine brain. RESULTS: In phantoms, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 5 s to 10 s for a 2D slice, and 60 s for a 3D volume, using parallel imaging and encoding 2 displacement positions/image. In ex vivo porcine brain, 16-point multiple-point magnetic resonance acoustic radiation force imaging maps could be acquired in 20 s for a 3D volume, using partial Fourier and parallel imaging and encoding 4 displacement positions/image. In 1 experiment it was observed that tissue displacement in ex vivo brain decreased by approximately 22% following FUS ablation. CONCLUSION: With the described efficiency improvements it is possible to acquire volumetric multiple-point magnetic resonance acoustic radiation force imaging maps, with simultaneous proton resonance frequency shift MR thermometry maps, in clinically acceptable times.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Termometria , Algoritmos , Animais , Técnicas de Imagem por Elasticidade , Análise de Fourier , Imageamento por Ressonância Magnética , Movimento (Física) , Imagens de Fantasmas , Suínos , Ultrassonografia
16.
Stroke ; 49(10): 2337-2344, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30355108

RESUMO

Background and Purpose- Cervical artery dissection is a major cause of ischemic stroke in the young and presents with various imaging findings, including stenosis and intramural hematoma (IMH). Our goal was to determine the relative contribution of lumen findings and IMH to acute ischemic stroke and whether a heavily T1-weighted sequence could more reliably detect IMH. Methods- Institutional review board approval was obtained for this retrospective study of 254 patients undergoing magnetic resonance imaging/magnetic resonance angiography for suspected dissection. Imaging included standard turbo spin-echo (TSE) T1-fat saturation and heavily T1-weighted flow-suppressed magnetization-prepared rapid acquisition gradient-recalled echo sequences. Subjects with stents (1) or atherosclerotic disease (26) were excluded, leaving 227 subjects. Kappa analysis was used to determine IMH interrater reliability on magnetization-prepared rapid acquisition gradient-recalled echo and T1-fat saturation in 4 vessels per subject. Lumen findings, cardiovascular risk factors, medications, and nondissection stroke sources were recorded. Mixed-effects multivariate Poisson regression was used to determine the prevalence ratio of each factor with acute ischemic stroke, accounting for 4 vessels per patient with backward elimination to a threshold P value of 0.10. Results- Patients were 41.9% men, mean age of 47.3±16.6 years, with 114 dissections and 107 strokes. IMH interrater reliability was significantly higher for magnetization-prepared rapid acquisition gradient-recalled echo (κ=0.83; 95% CI, 0.78-0.86) versus T1-fat saturation (0.58; 95% CI, 0.57-0.68). The final acute stroke prediction model included magnetization-prepared rapid acquisition gradient-recalled echo-detected IMH (prevalence ratio, 2.0; 95% CI, 1.1-3.9; P=0.034), stenosis, pseudoaneurysm, male sex, current smoking, and nondissection stroke sources. The final model had high discrimination for acute stroke (area under the curve, 0.902; 95% CI, 0.872-0.932), compared with models without stenosis (0.861; 95% CI, 0.821-0.902), and without stenosis and IMH (0.831; 95% CI, 0.783-0.879). All 3 models were significantly different at P<0.05. Conclusions- Along with stenosis, IMH detection significantly contributed to acute ischemic stroke pathogenesis in patients with suspected cervical artery dissection. In addition, IMH detection can be made more reliable with heavily T1-weighted sequences.


Assuntos
Artérias/cirurgia , Isquemia Encefálica/diagnóstico por imagem , Hematoma/patologia , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Artérias/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos
17.
Magn Reson Med ; 79(3): 1515-1524, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28795419

RESUMO

PURPOSE: A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS: MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS: Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION: This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Termometria/métodos , Animais , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Suínos
18.
Neurocrit Care ; 27(2): 242-248, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28054290

RESUMO

BACKGROUND: Little data exist regarding the practice of sodium management in acute neurologically injured patients. This study describes the practice variations, thresholds for treatment, and effectiveness of treatment in this population. METHODS: This retrospective, multicenter, observational study identified 400 ICU patients, from 17 centers, admitted for ≥48 h with subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), intraparenchymal hemorrhage, or intracranial tumors between January 1, 2011 and July 31, 2012. Data collection included demographics, APACHE II, Glascow Coma Score (GCS), serum sodium (Na+), fluid rate and tonicity, use of sodium-altering therapies, intensive care unit (ICU) and hospital length of stay, and modified Rankin score upon discharge. Data were collected for the first 21 days of ICU admission or ICU discharge, whichever came first. Sodium trigger for treatment defined as the Na+ value prior to treatment with response defined as an increase of ≥4 mEq/L at 24 h. RESULTS: Sodium-altering therapy was initiated in 34 % (137/400) of patients with 23 % (32/137) having Na+ >135 mEq/L at time of treatment initiation. The most common indications for treatment were declining serum Na+ (68/116, 59 %) and cerebral edema with mental status changes (21/116, 18 %). Median Na+ treatment trigger was 133 mEq/L (IQR 129-139) with no difference between diagnoses. Incidence and treatment of hyponatremia was more common in SAH and TBI [SAH (49/106, 46 %), TBI (39/97, 40 %), ICH (27/102, 26 %), tumor (22/95, 23 %); p = 0.001]. The most common initial treatment was hypertonic saline (85/137, 62 %), followed by oral sodium chloride tablets (42/137, 31 %) and fluid restriction (15/137, 11 %). Among treated patients, 60 % had a response at 24 h. Treated patients had lower admission GCS (12 vs. 14, p = 0.02) and higher APACHE II scores (12 vs. 10, p = 0.001). There was no statistically significant difference in outcome when comparing treated and untreated patients. CONCLUSION: Sodium-altering therapy is commonly employed among neurologically injured patients. Hypertonic saline infusions were used first line in more than half of treated patients with the majority having a positive response at 24 h. Further studies are needed to evaluate the impact of various treatments on patient outcomes.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Neoplasias Encefálicas/terapia , Cuidados Críticos/métodos , Hiponatremia/terapia , Hemorragias Intracranianas/terapia , Avaliação de Resultados em Cuidados de Saúde , Solução Salina Hipertônica/uso terapêutico , Adulto , Idoso , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/complicações , Feminino , Humanos , Hiponatremia/sangue , Hiponatremia/etiologia , Unidades de Terapia Intensiva , Hemorragias Intracranianas/sangue , Hemorragias Intracranianas/complicações , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Cloreto de Sódio/administração & dosagem
19.
Int J Hyperthermia ; 32(7): 723-34, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27441427

RESUMO

MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.


Assuntos
Acústica , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Sonicação , Temperatura
20.
Med Phys ; 43(3): 1374-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936722

RESUMO

PURPOSE: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. METHODS: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element's transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of a dose volume ratio (DVR), a DVR percent change between corrected and uncorrected phases, and an additional metric that measured phase spread. RESULTS: With phase aberration correction applied, there was an improvement in the focus for all breast anatomies as quantified by a reduction in power required (13%-102%) to reach 20 °C when compared to uncorrected simulations. Also, the DVR percent change increased by 5%-77% in seven out of eight cases, indicating an improvement to the treatment as measured by a reduction in thermal dose deposited to the nontreatment tissues. Breast compositions with a higher degree of heterogeneity along the ultrasound beam path showed greater reductions in thermal dose delivered outside of the treatment volume with correction applied than beam trajectories that propagated through more homogeneous breast compositions. An increasing linear trend was observed between the DVR percent change and the phase-spread metric (R(2) = 0.68). CONCLUSIONS: These results indicate that performing phase aberration correction for breast MRgFUS treatments is beneficial for the small-aperture transducer (14.4 × 9.8 cm) evaluated in this work. While all breast anatomies could benefit from phase aberration correction, greater benefits are observed in more heterogeneous anatomies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade , Imageamento por Ressonância Magnética , Modelos Biológicos , Cirurgia Assistida por Computador , Feminino , Fibroadenoma/diagnóstico por imagem , Fibroadenoma/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA