Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(9): 1811-1826, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595583

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/ß-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/ß-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/ß-catenin signaling in a human model of ACM.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , beta Catenina/genética , Sinalização do Cálcio , Junções Intercelulares , Miócitos Cardíacos , Placofilinas/genética
2.
Diabetes ; 70(2): 347-363, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33472944

RESUMO

Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.


Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Secreção de Insulina/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Biomimética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo
3.
Biomaterials ; 255: 120149, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32521331

RESUMO

The dynamic changes in estrogen levels throughout aging and during the menstrual cycle influence wound healing. Elevated estrogen levels during the pre-ovulation phase accelerate tissue repair, whereas reduced estrogen levels in post-menopausal women lead to slow healing. Although previous reports have shown that estrogen may potentiate healing by triggering the estrogen receptor (ER)-ß signaling pathway, its binding to ER-α has been associated with severe collateral effects and has therefore limited its use as a therapeutic agent. To this end, soy phytoestrogens, which preferentially bind to the ER-ß, are currently being explored as a safer therapeutic alternative to estrogen. However, the development and evaluation of phytoestrogen-based materials as local ER-ß modulators remains largely unexplored. Here, we engineered biomimetic and estrogenic nanofiber wound dressings built from soy protein isolate (SPI) and hyaluronic acid (HA) using immersion rotary jet spinning. These engineered scaffolds were shown to successfully recapitulate the native dermal architecture, while delivering an ER-ß-triggering phytoestrogen (genistein). When tested in ovariectomized mouse and ex vivo human skin tissues, HA/SPI scaffolds outperformed controls (no treatment or HA only scaffolds) towards promoting cutaneous tissue repair. These improved healing outcomes were prevented when the ER-ß pathway was genetically or chemically inhibited. Our findings suggest that estrogenic fibrous scaffolds facilitate skin repair by ER-ß activation.


Assuntos
Biomimética , Receptor beta de Estrogênio , Animais , Receptor alfa de Estrogênio , Humanos , Camundongos , Fitoestrógenos , Pele , Cicatrização
4.
Integr Biol (Camb) ; 12(3): 64-79, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32195539

RESUMO

The blood-brain barrier plays a critical role in delivering oxygen and nutrients to the brain while preventing the transport of neurotoxins. Predicting the ability of potential therapeutics and neurotoxicants to modulate brain barrier function remains a challenge due to limited spatial resolution and geometric constraints offered by existing in vitro models. Using soft lithography to control the shape of microvascular tissues, we predicted blood-brain barrier permeability states based on structural changes in human brain endothelial cells. We quantified morphological differences in nuclear, junction, and cytoskeletal proteins that influence, or indicate, barrier permeability. We established a correlation between brain endothelial cell pair structure and permeability by treating cell pairs and tissues with known cytoskeleton-modulating agents, including a Rho activator, a Rho inhibitor, and a cyclic adenosine monophosphate analog. Using this approach, we found that high-permeability cell pairs showed nuclear elongation, loss of junction proteins, and increased actin stress fiber formation, which were indicative of increased contractility. We measured traction forces generated by high- and low-permeability pairs, finding that higher stress at the intercellular junction contributes to barrier leakiness. We further tested the applicability of this platform to predict modulations in brain endothelial permeability by exposing cell pairs to engineered nanomaterials, including gold, silver-silica, and cerium oxide nanoparticles, thereby uncovering new insights into the mechanism of nanoparticle-mediated barrier disruption. Overall, we confirm the utility of this platform to assess the multiscale impact of pharmacological agents or environmental toxicants on blood-brain barrier integrity.


Assuntos
Barreira Hematoencefálica , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Microcirculação , Actinas/química , Transporte Biológico , Permeabilidade Capilar , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Dimetilpolisiloxanos , Células Endoteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Nanopartículas , Permeabilidade
5.
Circulation ; 141(4): 285-300, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31707831

RESUMO

BACKGROUND: Current differentiation protocols to produce cardiomyocytes from human induced pluripotent stem cells (iPSCs) are capable of generating highly pure cardiomyocyte populations as determined by expression of cardiac troponin T. However, these cardiomyocytes remain immature, more closely resembling the fetal state, with a lower maximum contractile force, slower upstroke velocity, and immature mitochondrial function compared with adult cardiomyocytes. Immaturity of iPSC-derived cardiomyocytes may be a significant barrier to clinical translation of cardiomyocyte cell therapies for heart disease. During development, cardiomyocytes undergo a shift from a proliferative state in the fetus to a more mature but quiescent state after birth. The mechanistic target of rapamycin (mTOR)-signaling pathway plays a key role in nutrient sensing and growth. We hypothesized that transient inhibition of the mTOR-signaling pathway could lead cardiomyocytes to a quiescent state and enhance cardiomyocyte maturation. METHODS: Cardiomyocytes were differentiated from 3 human iPSC lines using small molecules to modulate the Wnt pathway. Torin1 (0 to 200 nmol/L) was used to inhibit the mTOR pathway at various time points. We quantified contractile, metabolic, and electrophysiological properties of matured iPSC-derived cardiomyocytes. We utilized the small molecule inhibitor, pifithrin-α, to inhibit p53 signaling, and nutlin-3a, a small molecule inhibitor of MDM2 (mouse double minute 2 homolog) to upregulate and increase activation of p53. RESULTS: Torin1 (200 nmol/L) increased the percentage of quiescent cells (G0 phase) from 24% to 48% compared with vehicle control (P<0.05). Torin1 significantly increased expression of selected sarcomere proteins (including TNNI3 [troponin I, cardiac muscle]) and ion channels (including Kir2.1) in a dose-dependent manner when Torin1 was initiated after onset of cardiomyocyte beating. Torin1-treated cells had an increased relative maximum force of contraction, increased maximum oxygen consumption rate, decreased peak rise time, and increased downstroke velocity. Torin1 treatment increased protein expression of p53, and these effects were inhibited by pifithrin-α. In contrast, nutlin-3a independently upregulated p53, led to an increase in TNNI3 expression and worked synergistically with Torin1 to further increase expression of both p53 and TNNI3. CONCLUSIONS: Transient treatment of human iPSC-derived cardiomyocytes with Torin1 shifts cells to a quiescent state and enhances cardiomyocyte maturity.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Naftiridinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Benzotiazóis/farmacologia , Linhagem Celular , Humanos , Imidazóis/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Piperazinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
6.
Nat Biotechnol ; 36(6): 530-535, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806849

RESUMO

Inside cells, complex metabolic reactions are distributed across the modular compartments of organelles. Reactions in organelles have been recapitulated in vitro by reconstituting functional protein machineries into membrane systems. However, maintaining and controlling these reactions is challenging. Here we designed, built, and tested a switchable, light-harvesting organelle that provides both a sustainable energy source and a means of directing intravesicular reactions. An ATP (ATP) synthase and two photoconverters (plant-derived photosystem II and bacteria-derived proteorhodopsin) enable ATP synthesis. Independent optical activation of the two photoconverters allows dynamic control of ATP synthesis: red light facilitates and green light impedes ATP synthesis. We encapsulated the photosynthetic organelles in a giant vesicle to form a protocellular system and demonstrated optical control of two ATP-dependent reactions, carbon fixation and actin polymerization, with the latter altering outer vesicle morphology. Switchable photosynthetic organelles may enable the development of biomimetic vesicle systems with regulatory networks that exhibit homeostasis and complex cellular behaviors.


Assuntos
Trifosfato de Adenosina/metabolismo , Células Artificiais/metabolismo , Fotossíntese , Actinas/metabolismo , Biomimética , Biotecnologia , Ciclo do Carbono , Modelos Biológicos , Fenômenos Ópticos , Complexo de Proteína do Fotossistema II/metabolismo , Proteolipídeos/metabolismo , Rodopsinas Microbianas/metabolismo
7.
Lab Chip ; 17(13): 2294-2302, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28608907

RESUMO

Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER-MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Linhagem Celular , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas/métodos
8.
Biomaterials ; 122: 48-62, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28107664

RESUMO

To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking. Importantly, also no data from large animals or for other indications are available. Therefore, we here investigate the therapeutic-efficacy of human cardiopoietic stem cells in the treatment of post-infarction LV-dysfunction using a translational pig-model. Using growth-factor priming, lineage-specification of human bone-marrow derived MSCs was achieved to generate cardiopoietic stem cells according to GMP-compliant protocols. Thereafter, pigs with post-infarction LV-dysfunction (sub-acute phase;1-month) were randomized to either receive transcatheter NOGA 3D electromechanical-mapping guided intramyocardial transplantation of cardiopoietic cells or saline (control). After 30days, cardiac MRI (cMRI) was performed for functional evaluation and in-vivo cell-tracking. This approach was coupled with a comprehensive post-mortem cell-fate and mode-of-repair analysis. Cardiopoietic cell therapy was safe and ejection-fraction was significantly higher when compared to controls (p = 0.012). It further prevented maladaptive LV-remodeling and revealed a significantly lower relative and total infarct-size (p = 0.043 and p = 0.012). As in-vivo tracking and post-mortem analysis displayed only limited intramyocardial cardiopoietic cell-integration, the significant induction of neo-angiogenesis (∼40% higher; p = 0.003) and recruitment of endogenous progenitors (∼2.5x higher; p = 0.008) to the infarct border-zone appeared to be the major modes-of-repair. This is the first report using a pre-clinical large animal-model to demonstrate the safety and efficacy of cardiopoietic stem cells for the treatment of post-infarction LV-dysfunction to prevent negative LV-remodeling and subsequent CHF. It further provides insight into post-delivery cardiopoietic cell-fate and suggests the mechanisms of cardiopoietic cell-induced cardiac-repair. The adoption of GMP-/GLP-compliant methodologies may accelerate the translation into a phase-I clinical-trial in patients with post-ischemic LV-dysfunction broadening the current indication of this interesting cell-type.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia , Animais , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Infarto do Miocárdio/complicações , Recuperação de Função Fisiológica , Suínos , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Remodelação Ventricular
9.
Trends Cell Biol ; 26(10): 745-755, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27268909

RESUMO

The properties of tissue-specific microenvironments vary widely in the human body and demonstrably influence the structure and function of many cell types. Adipocytes are no exception, responding to cues in specialized niches to perform vital metabolic and endocrine functions. The adipose microenvironment is remodeled during tissue expansion to maintain the structural and functional integrity of the tissue and disrupted remodeling in obesity contributes to the progression of metabolic syndrome, breast cancer, and other malignancies. The increasing incidence of these obesity-related diseases and the recent focus on improved in vitro models of human tissue biology underscore growing interest in the regulatory role of adipocyte microenvironments in health and disease.


Assuntos
Adipócitos/citologia , Linhagem da Célula , Microambiente Celular , Animais , Junções Célula-Matriz/metabolismo , Doença , Humanos , Mecanotransdução Celular
10.
Cardiovasc Pathol ; 25(4): 316-324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27174867

RESUMO

Medications based on ergoline-derived dopamine and serotonin agonists are associated with off-target toxicities that include valvular heart disease (VHD). Reports of drug-induced VHD resulted in the withdrawal of appetite suppressants containing fenfluramine and phentermine from the US market in 1997 and pergolide, a Parkinson's disease medication, in 2007. Recent evidence suggests that serotonin receptor activity affected by these medications modulates cardiac valve interstitial cell activation and subsequent valvular remodeling, which can lead to cardiac valve fibrosis and dysfunction similar to that seen in carcinoid heart disease. Failure to identify these risks prior to market and continued use of similar drugs reaffirm the need to improve preclinical evaluation of drug-induced VHD. Here, we present two complimentary assays to measure stiffness and contractile stresses generated by engineered valvular tissues in vitro. As a case study, we measured the effects of acute (24 h) pergolide exposure to engineered porcine aortic valve interstitial cell (AVIC) tissues. Pergolide exposure led to increased tissue stiffness, but it decreased both basal and active contractile tone stresses generated by AVIC tissues. Pergolide exposure also disrupted AVIC tissue organization (i.e., tissue anisotropy), suggesting that the mechanical properties and contractile functionality of these tissues are governed by their ability to maintain their structure. We expect further use of these assays to identify off-target drug effects that alter the phenotypic balance of AVICs, disrupt their ability to maintain mechanical homeostasis, and lead to VHD.


Assuntos
Valva Aórtica/efeitos dos fármacos , Agonistas de Dopamina/toxicidade , Técnicas In Vitro/métodos , Pergolida/toxicidade , Rigidez Vascular , Animais , Western Blotting , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Contração Muscular/efeitos dos fármacos , Suínos , Engenharia Tecidual/métodos
11.
J Cell Biol ; 212(4): 389-97, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26858266

RESUMO

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (µtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of µtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.


Assuntos
Comunicação Celular , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Simulação por Computador , Adesões Focais/metabolismo , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Modelos Cardiovasculares , Miócitos Cardíacos/transplante , Fenótipo , Cultura Primária de Células , Transplante de Células-Tronco , Estresse Mecânico , Fatores de Tempo
12.
Biomed Res Int ; 2016: 4081638, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28044126

RESUMO

Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.


Assuntos
Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Animais , Metabolismo Energético/fisiologia , Acoplamento Excitação-Contração/fisiologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Retículo Sarcoplasmático/fisiologia
13.
Anat Rec (Hoboken) ; 297(9): 1758-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25125187

RESUMO

Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM.


Assuntos
Citoesqueleto/metabolismo , Mecanotransdução Celular , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vasoconstrição , Animais , Citoesqueleto/patologia , Humanos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Remodelação Vascular
14.
Proc Natl Acad Sci U S A ; 108(50): 19943-8, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123981

RESUMO

Endothelial-mesenchymal transformation (EMT) is a critical event for the embryonic morphogenesis of cardiac valves. Inducers of EMT during valvulogenesis include VEGF, TGF-ß1, and wnt/ß-catenin (where wnt refers to the wingless-type mammary tumor virus integration site family of proteins), that are regulated in a spatiotemporal manner. EMT has also been observed in diseased, strain-overloaded valve leaflets, suggesting a regulatory role for mechanical strain. Although the preponderance of studies have focused on the role of soluble mitogens, we asked if the valve tissue microenvironment contributed to EMT. To recapitulate these microenvironments in a controlled, in vitro environment, we engineered 2D valve endothelium from sheep valve endothelial cells, using microcontact printing to mimic the regions of isotropy and anisotropy of the leaflet, and applied cyclic mechanical strain in an attempt to induce EMT. We measured EMT in response to both low (10%) and high strain (20%), where low-strain EMT occurred via increased TGF-ß1 signaling and high strain via increased wnt/ß-catenin signaling, suggesting dual strain-dependent routes to distinguish EMT in healthy versus diseased valve tissue. The effect was also directionally dependent, where cyclic strain applied orthogonal to axis of the engineered valve endothelium alignment resulted in severe disruption of cell microarchitecture and greater EMT. Once transformed, these tissues exhibited increased contractility in the presence of endothelin-1 and larger basal mechanical tone in a unique assay developed to measure the contractile tone of the engineered valve tissues. This finding is important, because it implies that the functional properties of the valve are sensitive to EMT. Our results suggest that cyclic mechanical strain regulates EMT in a strain magnitude and directionally dependent manner.


Assuntos
Endotélio/embriologia , Valvas Cardíacas/embriologia , Mesoderma/embriologia , Morfogênese , Estresse Mecânico , Actinas/metabolismo , Animais , Anisotropia , Núcleo Celular/metabolismo , Endotélio/metabolismo , Valvas Cardíacas/metabolismo , Mesoderma/metabolismo , Modelos Biológicos , Contração Miocárdica , Ovinos , Transdução de Sinais , Engenharia Tecidual
15.
Langmuir ; 24(1): 316-22, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18052217

RESUMO

The capability to selectively and reversibly control protein-protein interactions in antibody-doped polypyrrole (PPy) was accomplished by changing the voltage applied to the polymer. Polypyrrole was doped with sulfate polyanions and monoclonal anti-human fibronectin antibodies (alphaFN). The ability to toggle the binding and dissociation of fibronectin (FN) to alphaFN-doped polypyrrole was demonstrated. Staircase potential electrochemical impedance spectroscopy (SPEIS) was performed to characterize the impedance and charge transfer characteristics of the alphaFN-doped PPy as a function of applied voltage, frequency, and FN concentration. Impedance measurements indicated oxidation of alphaFN-doped PPy promoted selective binding of FN to alphaFN antibodies and reduction of the polymer films facilitated FN dissociation. Moreover, SPEIS measurements suggested that the apparent reversibility of antigen binding to antibody-doped PPy is not due to the suppression of hydrophobic binding forces between antibody and antigen. Instead, our data indicate that reversible antigen binding to antibody-doped PPy can be attributed to the minimization of charge in the polymer films during oxidation and reduction. Furthermore, alphaFN-doped PPy was utilized to collect real-time, dynamic measurements of varying FN concentrations in solution by repeatedly binding and releasing FN. Our data demonstrate that antibody-doped PPy represents an electrically controllable sensing platform which can be exploited to collect rapid, repeated measurements of protein concentrations with molecular specificity.


Assuntos
Fibronectinas/química , Polímeros/química , Pirróis/química , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Eletroquímica , Fibronectinas/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Polieletrólitos , Pirróis/imunologia , Análise Espectral , Sulfatos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA