RESUMO
Approximately 40% of patients with cancer are eligible for check-point inhibitor (CPI) therapy. Little research has examined the potential cognitive impact of CPIs. First-line CPI therapy offers a unique research opportunity without chemotherapy-related confounders. The purpose of this prospective, observational pilot was to (1) demonstrate the feasibility of prospective recruitment, retention, and neurocognitive assessment for older adults receiving first-line CPI(s) and (2) provide preliminary evidence of changes in cognitive function associated with CPI(s). Patients receiving first-line CPI(s) (CPI Group) were assessed at baseline (n = 20) and 6 months (n = 13) for self-report of cognitive function and neurocognitive test performance. Results were compared to age-matched controls without cognitive impairment assessed annually by the Alzheimer's Disease Research Center (ADRC). Plasma biomarkers were measured at baseline and 6 months for the CPI Group. Estimated differences for CPI Group scores prior to initiating CPIs (baseline) trended to lower performance on the Montreal Cognitive Assessment-Blind (MOCA-Blind) test compared to the ADRC controls (p = 0.066). Controlling for age, the CPI Group's 6-months MOCA-Blind performance was lower than the ADRC control group's 12-months performance (p = 0.011). No significant differences in biomarkers were detected between baseline and 6 months, although significant correlations were noted for biomarker change and cognitive performance at 6 months. IFNγ, IL-1ß, IL-2, FGF2, and VEGF were inversely associated with Craft Story Recall performance (p < 0.05), e.g., higher levels correlated with poorer memory performance. Higher IGF-1 and VEGF correlated with better letter-number sequencing and digit-span backwards performance, respectively. Unexpected inverse correlation was noted between IL-1α and Oral Trail-Making Test B completion time. CPI(s) may have a negative impact on some neurocognitive domains and warrant further investigation. A multi-site study design may be crucial to fully powering prospective investigation of the cognitive impact of CPIs. Establishment of a multi-site observational registry from collaborating cancer centers and ADRCs is recommended.
RESUMO
In addition to complications of acute diseases, chronic viral infections are linked to both malignancies and autoimmune disorders. Lack of adequate treatment options for Epstein-Barr virus (EBV), Human T-lymphotropic virus type 1 (HTLV-1), and human papillomavirus (HPV) remains. The NexImmune Artificial Immune Modulation (AIM) nanoparticle platform can be used to direct T cell responses by mimicking the dendritic cell function. In one application, AIM nanoparticles are used ex vivo to enrich and expand (E+E) rare populations of multi-antigen-specific CD8+ T cells for use of these cells as an AIM adoptive cell therapy. This study has demonstrated using E+E CD8+ T cells, the functional relevance of targeting EBV, HTLV-1, and HPV. Expanded T cells consist primarily of effector memory, central memory, and self-renewing stem-like memory T cells directed at selected viral antigen peptides presented by the AIM nanoparticle. T cells expanded against either EBV- or HPV-antigens were highly polyfunctional and displayed substantial in vitro cytotoxic activity against cell lines expressing the respective antigens. Our initial work was in the context of exploring T cells expanded from healthy donors and restricted to human leukocyte antigen (HLA)-A*02:01 serotype. AIM Adoptive Cell Therapies (ACT) are also being developed for other HLA class I serotypes. AIM adoptive cell therapies of autologous or allogeneic T cells specific to antigens associated with acute myeloid leukemia and multiple myeloma are currently in the clinic. The utility and flexibility of the AIM nanoparticle platform will be expanded as we advance the second application, an AIM injectable off-the-shelf nanoparticle, which targets multiple antigen-specific T cell populations to either activate, tolerize, or destroy these targeted CD8+ T cells directly in vivo, leaving non-target cells alone. The AIM injectable platform offers the potential to develop new multi-antigen specific therapies for treating infectious diseases, cancer, and autoimmune diseases.
RESUMO
A cocktail of six lytic bacteriophages, SalmoFresh™, significantly (p < 0.05) reduced the number of surface-applied Salmonella Kentucky and Brandenburg from stainless steel and glass surfaces by > 99% (2.1-4.3 log). Both strains were susceptible to SalmoFresh™ in the spot-test assay. Conversely, SalmoFresh™ was unable to reduce surface contamination with a Salmonella Paratyphi B strain that was not susceptible to the phage cocktail in the spot-test assay. However, by replacing two SalmoFresh™ component phages with two new phages capable of lysing the Paratyphi B strain in the spot-test assay, the target range of the cocktail was shifted to include the Salmonella Paratyphi B strain. The modified cocktail, SalmoLyse™, was able to significantly (p < 0.05) reduce surface contamination of the Paratyphi B strain by > 99% (2.1-4.1 log). The data show that both phage cocktails were effective in significantly reducing the levels of Salmonella on hard surfaces, provided the contaminating strains were susceptible in the spot-test (i.e., spot-test susceptibility was indicative of efficacy in subsequent surface decontamination studies). The data also support the concept that phage preparations can be customized to meet the desired antibacterial application.