Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37204781

RESUMO

The mechanisms that regulate the spatial sorting of nonmuscle myosins-2 (NM2) isoforms and couple them mechanically to the plasma membrane are unclear. Here we show that the cytoplasmic junctional proteins cingulin (CGN) and paracingulin (CGNL1) interact directly with NM2s through their C-terminal coiled-coil sequences. CGN binds strongly to NM2B, and CGNL1 to NM2A and NM2B. Knockout (KO), exogenous expression, and rescue experiments with WT and mutant proteins show that the NM2-binding region of CGN is required for the junctional accumulation of NM2B, ZO-1, ZO-3, and phalloidin-labeled actin filaments, and for the maintenance of tight junction membrane tortuosity and apical membrane stiffness. CGNL1 expression promotes the junctional accumulation of both NM2A and NM2B and its KO results in myosin-dependent fragmentation of adherens junction complexes. These results reveal a mechanism for the junctional localization of NM2A and NM2B and indicate that, by binding to NM2s, CGN and CGNL1 mechanically couple the actomyosin cytoskeleton to junctional protein complexes to mechanoregulate the plasma membrane.


Assuntos
Membrana Celular , Proteínas do Citoesqueleto , Citoesqueleto , Miosinas , Junções Aderentes/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo
3.
Nature ; 602(7898): 623-631, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140396

RESUMO

The mutational landscape is shaped by many processes. Genic regions are vulnerable to mutation but are preferentially protected by transcription-coupled repair1. In microorganisms, transcription has been demonstrated to be mutagenic2,3; however, the impact of transcription-associated mutagenesis remains to be established in higher eukaryotes4. Here we show that ID4-a cancer insertion-deletion (indel) mutation signature of unknown aetiology5 characterized by short (2 to 5 base pair) deletions -is due to a transcription-associated mutagenesis process. We demonstrate that defective ribonucleotide excision repair in mammals is associated with the ID4 signature, with mutations occurring at a TNT sequence motif, implicating topoisomerase 1 (TOP1) activity at sites of genome-embedded ribonucleotides as a mechanistic basis. Such TOP1-mediated deletions occur somatically in cancer, and the ID-TOP1 signature is also found in physiological settings, contributing to genic de novo indel mutations in the germline. Thus, although topoisomerases protect against genome instability by relieving topological stress6, their activity may also be an important source of mutations in the human genome.


Assuntos
DNA Topoisomerases Tipo I , Células Germinativas , Mutagênese , Neoplasias , Animais , Reparo do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , Células Germinativas/metabolismo , Humanos , Mutagênese/genética , Mutação , Neoplasias/genética , Ribonucleotídeos/genética
4.
Cancer Res ; 82(4): 632-647, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921014

RESUMO

SRC is a nonreceptor tyrosine kinase with key roles in breast cancer development and progression. Despite this, SRC tyrosine kinase inhibitors have so far failed to live up to their promise in clinical trials, with poor overall response rates. We aimed to identify possible synergistic gene-drug interactions to discover new rational combination therapies for SRC inhibitors. An unbiased genome-wide CRISPR-Cas9 knockout screen in a model of triple-negative breast cancer revealed that loss of integrin-linked kinase (ILK) and its binding partners α-Parvin and PINCH-1 sensitizes cells to bosutinib, a clinically approved SRC/ABL kinase inhibitor. Sensitivity to bosutinib did not correlate with ABL dependency; instead, bosutinib likely induces these effects by acting as a SRC tyrosine kinase inhibitor. Furthermore, in vitro and in vivo models showed that loss of ILK enhanced sensitivity to eCF506, a novel and highly selective inhibitor of SRC with a unique mode of action. Whole-genome RNA sequencing following bosutinib treatment in ILK knockout cells identified broad changes in the expression of genes regulating cell adhesion and cell-extracellular matrix. Increased sensitivity to SRC inhibition in ILK knockout cells was associated with defective adhesion, resulting in reduced cell number as well as increased G1 arrest and apoptosis. These findings support the potential of ILK loss as an exploitable therapeutic vulnerability in breast cancer, enhancing the effectiveness of clinical SRC inhibitors. SIGNIFICANCE: A CRISPR-Cas9 screen reveals that loss of integrin-linked kinase synergizes with SRC inhibition, providing a new opportunity for enhancing the clinical effectiveness of SRC inhibitors in breast cancer.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Quinases da Família src/antagonistas & inibidores , Compostos de Anilina/farmacologia , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos Knockout , Nitrilas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Quinases da Família src/metabolismo
5.
J Struct Biol ; 213(4): 107793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481988

RESUMO

On the basis of sequence homology with mammalian α-keratins, and on the criteria that the coiled-coil segments and central linker in the rod domain of these molecules must have conserved lengths if they are to assemble into viable intermediate filaments, a total of 28 Type I and Type II keratin intermediate filament chains (KIF) have been identified from the genome of the European common wall lizard (Podarcis muralis). Using the same criteria this number may be compared to 33 found here in the green anole lizard (Anole carolinensis) and 25 in the tuatara (Sphenodon punctatus). The Type I and Type II KIF genes in the wall lizard fall in clusters on chromosomes 13 and 2 respectively. Although some differences occur in the terminal domains in the KIF chains of the two lizards and tuatara, the similarities between key indicator residues - cysteine, glycine and proline - are significant. The terminal domains of the KIF chains in the wall lizard also contain sequence repeats commonly based on glycine and large apolar residues and would permit the fine tuning of physical properties when incorporated within the intermediate filaments. The H1 domain in the Type II chain is conserved across the lizards, tuatara and mammals, and has been related to its role in assembly at the 2-4 molecule level. A KIF-like chain (K80) with an extensive tail domain comprised of multiple tandem repeats has been identified as having a potential filament-crosslinking role.


Assuntos
Citoesqueleto/metabolismo , Filamentos Intermediários/genética , Queratinas/genética , Lagartos/genética , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Epiderme/metabolismo , Epitélio/metabolismo , Glicina/química , Glicina/genética , Glicina/metabolismo , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Queratinas/química , Queratinas/metabolismo , Lagartos/classificação , Lagartos/metabolismo , Família Multigênica/genética , Prolina/química , Prolina/genética , Prolina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
6.
Orphanet J Rare Dis ; 16(1): 231, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016138

RESUMO

BACKGROUND: Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) is the most common form of primordial dwarfism, caused by bialleic mutations in the pericentrin gene (PCNT). Aside from its classic features, there are multiple associated medical complications, including a well-documented risk of neurovascular disease. Over the past several years, it has become apparent that additional vascular issues, as well as systemic hypertension and kidney disease may also be related to MOPDII. However, the frequency and extent of the vasculopathy was unclear. To help address this question, a vascular substudy was initiated within our Primordial Dwarfism Registry. RESULTS: Medical records from 47 individuals, living and deceased, ranging in age from 3 to 41 years of age were interrogated for this purpose. Of the total group, 64% were diagnosed with moyamoya, intracranial aneurysms, or both. In general, the age at diagnosis for moyamoya was younger than aneurysms, but the risk for neurovascular disease was throughout the shortened lifespan. In addition to neurovascular disease, renal, coronary and external carotid artery involvement are documented. 43% of the total group was diagnosed with hypertension, and 17% had myocardial infarctions. A total of 32% of the entire cohort had some form of chronic kidney disease, with 4% of the total group necessitating a kidney transplant. In addition, 38% had diabetes/insulin resistance. Ages of diagnoses, treatment modalities employed, and location of vasculopathies were notated as available and applicable, as well as frequencies of other comorbidities. CONCLUSIONS: It is now clear that vascular disease in MOPDII is global and screening of the cardiac and renal vessels is warranted along with close monitoring of blood pressure. We recommend a blood pressure of 110/70 mmHg as a starting point for an upper limit, especially if the individual has a history of neurovascular disease, chronic kidney disease and/or diabetes. Additionally, providers need to be at high alert for the possibility of myocardial infarctions in young adults with MOPDII, so that appropriate treatment can be initiated promptly in an acute situation.


Assuntos
Nanismo , Microcefalia , Osteocondrodisplasias , Doenças Vasculares , Adolescente , Adulto , Criança , Pré-Escolar , Nanismo/genética , Retardo do Crescimento Fetal , Humanos , Osteocondrodisplasias/genética , Doenças Vasculares/genética , Adulto Jovem
7.
J Struct Biol ; 213(1): 107706, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33577903

RESUMO

Determination of the sequences of the keratin intermediate filament chains in tuatara has shown that these are closely akin to the α-keratins in human and other vertebrates, especially in the central, coiled-coil rod region. The domain lengths within the rod are preserved exactly, both Type I and Type II chains have been recognised, and sequence identity/homology exists between their respective chains. Nonetheless, there are characteristic differences in amino acid composition and sequence between their respective head (N-terminal) domains and their tail (C-terminal) domains, though some similarities are retained. Further, there is evidence of tandem repeats of a variety of lengths in the tuatara heads and tails indicative of sequence duplication events. These are not evident in human α-keratins and would therefore have implications for the physical attributes of the tissues in the two species. Multiple families of keratin-associated proteins that are ultra-high cysteine-rich or glycine + tyrosine-rich in human and other species do not have direct equivalents in the tuatara. Although high-sulphur proteins are present in tuatara the cysteine residue contents are significantly lower than in human. Further, no sequence homologies between the HS proteins in the two species have been found, thereby casting considerable doubt as to whether any matrix-forming high-sulphur proteins exist in tuatara. These observations may be correlated with the numerous cysteine-rich ß-keratins (corneous ß-proteins) that are present in tuatara, but which are conspicuously absent in mammals.


Assuntos
Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Répteis/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Evolução Biológica , Proteínas do Citoesqueleto/metabolismo , Humanos , Homologia de Sequência de Aminoácidos
8.
J Struct Biol ; 212(1): 107599, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800921

RESUMO

The ß-keratin chain with four 34-residue repeats that is conserved across the lepidosaurs (lizards, snakes and tuatara) contains three linker regions as well as a short, conserved N-terminal domain and a longer, more variable C-terminal domain. Earlier modelling had shown that only six classes of structure involving the four 34-residue repeats were possible. In three of these the 34-residue repeats were confined to a single filament (Classes 1, 2 and 3) whereas in the remaining three classes the repeats lay in two, three or four filaments, with some of the linkers forming interfilament connections (Classes 4, 5 and 6). In this work the members of each class of structure (a total of 20 arrangements) have been described and a comparison has been made of the topologies of each of the linker regions. This provides new constraints on the structure of the chain as a whole. Also, analysis of the sequences of the three linker regions has revealed that the central linker (and only the central linker) contains four short regions displaying a distinctive dipeptide repeat of the form (S-X)2,3 separated by short regions containing proline and cysteine residues. By analogy with silk fibroin proteins this has the capability of forming a ß-sheet-like conformation. Using the topology and sequence data the evidence suggests that the four 34-residue repeat chain adopts a Class 4a structure with a ß-sandwich in filament 1 connected through the central linker to a ß-sandwich in filament 2.


Assuntos
Sequência Conservada/genética , Sequências de Repetição em Tandem/genética , beta-Queratinas/genética , Sequência de Aminoácidos , Animais , Cisteína/genética , Prolina/genética , Domínios Proteicos/genética
9.
Hum Mutat ; 40(8): 1063-1070, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045292

RESUMO

Microcephalic primordial dwarfism (MPD) is a group of rare single-gene disorders characterized by the extreme reduction in brain and body size from early development onwards. Proteins encoded by MPD-associated genes play important roles in fundamental cellular processes, notably genome replication and repair. Here we report the identification of four MPD individuals with biallelic variants in DNA2, which encodes an adenosine triphosphate (ATP)-dependent helicase/nuclease involved in DNA replication and repair. We demonstrate that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) found in these individuals substantially impair DNA2 transcript splicing. Additionally, we identify a missense variant (c.1963A>G), affecting a residue of the ATP-dependent helicase domain that is highly conserved between humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to directly impact ATP/ADP (adenosine diphosphate) binding by DNA2. Our findings support the pathogenicity of these variants as biallelic hypomorphic mutations, establishing DNA2 as an MPD disease gene.


Assuntos
DNA Helicases/genética , Nanismo/genética , Variação Genética , Microcefalia/genética , Adolescente , Alelos , DNA Helicases/química , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese Insercional , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
10.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773277

RESUMO

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Variação Genética , Anormalidades Musculoesqueléticas/patologia , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Knockout , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra
11.
Nat Genet ; 51(1): 96-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478443

RESUMO

DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Nanismo/genética , Mutação com Ganho de Função/genética , Microcefalia/genética , Proteínas do Grupo Polycomb/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA Metiltransferase 3A , Metilases de Modificação do DNA/genética , Feminino , Células HeLa , Histonas/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética
12.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503519

RESUMO

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Assuntos
Insuficiência Adrenal/genética , DNA Polimerase II/genética , Retardo do Crescimento Fetal/genética , Mutação/genética , Osteocondrodisplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Inibidor de Quinase Dependente de Ciclina p57/genética , Replicação do DNA/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
13.
Am J Hum Genet ; 103(4): 553-567, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290151

RESUMO

The conserved oligomeric Golgi (COG) complex is involved in intracellular vesicular transport, and is composed of eight subunits distributed in two lobes, lobe A (COG1-4) and lobe B (COG5-8). We describe fourteen individuals with Saul-Wilson syndrome, a rare form of primordial dwarfism with characteristic facial and radiographic features. All affected subjects harbored heterozygous de novo variants in COG4, giving rise to the same recurrent amino acid substitution (p.Gly516Arg). Affected individuals' fibroblasts, whose COG4 mRNA and protein were not decreased, exhibited delayed anterograde vesicular trafficking from the ER to the Golgi and accelerated retrograde vesicular recycling from the Golgi to the ER. This altered steady-state equilibrium led to a decrease in Golgi volume, as well as morphologic abnormalities with collapse of the Golgi stacks. Despite these abnormalities of the Golgi apparatus, protein glycosylation in sera and fibroblasts from affected subjects was not notably altered, but decorin, a proteoglycan secreted into the extracellular matrix, showed altered Golgi-dependent glycosylation. In summary, we define a specific heterozygous COG4 substitution as the molecular basis of Saul-Wilson syndrome, a rare skeletal dysplasia distinct from biallelic COG4-CDG.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Transporte Proteico/genética , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Animais Geneticamente Modificados/genética , Linhagem Celular , Criança , Pré-Escolar , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/patologia , Glicosilação , Complexo de Golgi/genética , Heterozigoto , Humanos , Lactente , Masculino , Peixe-Zebra
14.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

15.
Adv Exp Med Biol ; 1054: 71-86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29797269

RESUMO

The trichocyte (hard α-) keratins are epidermal appendages (hair, wool, hoof, horn, claw, baleen and quill) with a classic filament-matrix composite structure. In human hair, for example, keratin intermediate filaments (IF) of diameter 7.5 nm are embedded in a matrix formed from at least 89 different types of keratin-associated proteins (KAPs). The latter fall into three families, generally defined in terms of their cysteine residue or glycine plus tyrosine residue content. The KAPs, which infiltrate the space between the IF, are recognized as having especially important roles in the organisation of the IF into macrofibrils, in determining some of the most important physical attributes of the fully-keratinised hair fibre, including its hardness, toughness and pliability, and in linking IF to one another, either directly or indirectly, with a resultant increase in durability and resistance to degradation by microorganisms. Sequence data for many KAPs are now available, and repeating motifs of varying extent have been observed in a number of them. Little, however, is known about their three-dimensional structures, though modelling has indicated that some local structural regularity is likely to exist. Current data suggest that the KAPs in vivo may adopt a variety of energetically-similar conformations stabilized predominantly by intramolecular disulfide bonds. The role of KAPs in hair diseases relates more to modulation in gene expression than to point mutations, in contrast to that observed for the IF proteins.


Assuntos
Filamentos Intermediários/química , Queratinas/química , Animais , Dissulfetos/química , Cabelo/química , Humanos
16.
Subcell Biochem ; 82: 131-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101861

RESUMO

The intermediate filaments (IF) in trichocyte (hard α-) keratin are unique amongst the various classes of IF in having not one but two topologically-distinct structures. The first is formed at an early stage of hair development in a reducing environment within the cells in the lower part of the follicle. The second structure occurs at a later stage of hair development in the upper part of the follicle, where there is a transition to an oxidizing environment. Crosslinking studies reveal that molecular slippage occurs within the IF upon oxidation and that this results in many cysteine residues lying in near axial alignment, thereby facilitating disulphide bond formation. The disulphide bonds so formed stabilize the assembly of IF molecules and convert the keratin fibre into a tough, resilient and insoluble structure suitable for its function in vivo as a thermo-regulator and a protector of the animal against its external environment.


Assuntos
Queratinas Específicas do Cabelo/química , Queratinas Específicas do Cabelo/ultraestrutura , Animais , Folículo Piloso , Humanos
17.
J Allergy Clin Immunol ; 138(1): 210-218.e9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221134

RESUMO

BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) 2 (p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency [PASLI]-R1), a recently described primary immunodeficiency, results from autosomal dominant mutations in PIK3R1, the gene encoding the regulatory subunit (p85α, p55α, and p50α) of class IA phosphoinositide 3-kinases. OBJECTIVES: We sought to review the clinical, immunologic, and histopathologic phenotypes of APDS2 in a genetically defined international patient cohort. METHODS: The medical and biological records of 36 patients with genetically diagnosed APDS2 were collected and reviewed. RESULTS: Mutations within splice acceptor and donor sites of exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper respiratory tract infections (100%), pneumonitis (71%), and chronic lymphoproliferation (89%, including adenopathy [75%], splenomegaly [43%], and upper respiratory tract lymphoid hyperplasia [48%]) were the most common features. Growth retardation was frequently noticed (45%). Other complications were mild neurodevelopmental delay (31%); malignant diseases (28%), most of them being B-cell lymphomas; autoimmunity (17%); bronchiectasis (18%); and chronic diarrhea (24%). Decreased serum IgA and IgG levels (87%), increased IgM levels (58%), B-cell lymphopenia (88%) associated with an increased frequency of transitional B cells (93%), and decreased numbers of naive CD4 and naive CD8 cells but increased numbers of CD8 effector/memory T cells were predominant immunologic features. The majority of patients (89%) received immunoglobulin replacement; 3 patients were treated with rituximab, and 6 were treated with rapamycin initiated after diagnosis of APDS2. Five patients died from APDS2-related complications. CONCLUSION: APDS2 is a combined immunodeficiency with a variable clinical phenotype. Complications are frequent, such as severe bacterial and viral infections, lymphoproliferation, and lymphoma similar to APDS1/PASLI-CD. Immunoglobulin replacement therapy, rapamycin, and, likely in the near future, selective phosphoinositide 3-kinase δ inhibitors are possible treatment options.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Fenótipo , Adolescente , Adulto , Alelos , Biópsia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Frequência do Gene , Genótipo , Humanos , Síndromes de Imunodeficiência/mortalidade , Masculino , Pessoa de Meia-Idade , Mutação , Sítios de Splice de RNA , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
18.
Am J Hum Genet ; 98(4): 615-26, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26996948

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310(∗)) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability.


Assuntos
Variação Genética , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Manosiltransferases/genética , Hipotonia Muscular/genética , Convulsões/genética , Anormalidades Múltiplas/genética , Adolescente , Linhagem Celular Tumoral , Criança , Consanguinidade , Egito , Técnicas de Genotipagem , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Lactente , Japão , Mutação , Paquistão , Linhagem , Adulto Jovem
20.
Cell Tissue Res ; 363(3): 735-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26340985

RESUMO

Among the 26 human type II keratins, K78 is the only one that has not yet been explored with regard to its expression characteristics. Here, we show that, at both the transcriptional and translational levels, K78 is strongly expressed in the basal and parabasal cell layers with decreasing intensity in the lower suprabasal cells of keratinising and non-keratinising squamous epithelia and keratinocyte cultures. The same pattern has been detected at the transcriptional level in the corresponding mouse epithelia. Murine K78 protein, which contains an extraordinary large extension of its tail domain, which is unique among all known keratins, is not detectable by the antibody used. Concomitant studies in human epithelia have confirmed K78 co-expression with the classical basal keratins K5 and K14. Similarly, K78 co-expression with the differentiation-related type I keratins K10 (epidermis) and K13 (non-keratinising epithelia) occurs in the parabasal cell layer, whereas that of the corresponding type II keratins K1 (epidermis) and K4 (non-keratinising epithelia) unequivocally starts subsequent to the respective type I keratins. Our data concerning K78 expression modify the classical concept of keratin pair K5/K14 representing the basal compartment and keratin pairs K1/K10 or K4/K13 defining the differentiating compartment of stratified epithelia. Moreover, the K78 expression pattern and the decoupled K1/K10 and K4/K13 expression define the existence of a hitherto unperceived early differentiation stage in the parabasal layer characterized by K78/K10 or K78/K13 expression.


Assuntos
Epitélio/metabolismo , Regulação da Expressão Gênica , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Desenvolvimento Embrionário , Epiderme/metabolismo , Evolução Molecular , Imunofluorescência , Loci Gênicos , Humanos , Hibridização In Situ , Queratinócitos/metabolismo , Queratinas Tipo II/química , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA