Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617352

RESUMO

Circadian (~24 h) rhythms are a fundamental feature of life, and their disruption increases the risk of infectious diseases, metabolic disorders, and cancer1-6. Circadian rhythms couple to the cell cycle across eukaryotes7,8 but the underlying mechanism is unknown. We previously identified an evolutionarily conserved circadian oscillation in intracellular potassium concentration, [K+]i9,10. As critical events in the cell cycle are regulated by intracellular potassium11,12, an enticing hypothesis is that circadian rhythms in [K+]i form the basis of this coupling. We used a minimal model cell, the alga Ostreococcus tauri, to uncover the role of potassium in linking these two cycles. We found direct reciprocal feedback between [K+]i and circadian gene expression. Inhibition of proliferation by manipulating potassium rhythms was dependent on the phase of the circadian cycle. Furthermore, we observed a total inhibition of cell proliferation when circadian gene expression is inhibited. Strikingly, under these conditions a sudden enforced gradient of extracellular potassium was sufficient to induce a round of cell division. Finally, we provide evidence that interactions between potassium and circadian rhythms also influence proliferation in mammalian cells. These results establish circadian regulation of intracellular potassium levels as a primary factor coupling the cell- and circadian cycles across diverse organisms.

2.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
3.
Nat Struct Mol Biol ; 29(8): 759-766, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864165

RESUMO

The AAA+ family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together, these studies clarify a key step in the regulation of cyanobacterial circadian rhythms by KaiC phosphorylation.


Assuntos
Relógios Circadianos , Synechococcus , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fosforilação , Synechococcus/metabolismo
4.
PLoS Genet ; 17(11): e1009933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807912

RESUMO

In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Inflamação/genética , Fator de Transcrição RelA/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/patologia , NF-kappa B/genética , Núcleo Supraquiasmático/metabolismo
5.
Cell Rep ; 36(5): 109487, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348140

RESUMO

Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. ß-hydroxybutyrate (ß-OHB) is utilized in lysine ß-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke ß-OHB. Mass spectrometry analysis of the ß-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Proteômica , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , NAD/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183418

RESUMO

Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA-repair enzymes. While CRYs lack DNA-repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SKP1 cullin 1-F-box (SCF)FBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady-state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3 Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target-gene expression, suggesting that this may be a primary mechanism by which they influence cell growth.


Assuntos
Criptocromos/genética , Mutação de Sentido Incorreto/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Proliferação de Células , Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mapas de Interação de Proteínas , Transcrição Gênica
7.
Mol Cell ; 66(4): 447-457.e7, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28506462

RESUMO

The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos , Ritmo Circadiano , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Animais , Linhagem Celular Tumoral , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Isomerismo , Camundongos , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Filogenia , Prolina , Domínios Proteicos , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Triptofano
8.
Science ; 355(6330): 1174-1180, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28302851

RESUMO

Circadian clocks are ubiquitous timing systems that induce rhythms of biological activities in synchrony with night and day. In cyanobacteria, timing is generated by a posttranslational clock consisting of KaiA, KaiB, and KaiC proteins and a set of output signaling proteins, SasA and CikA, which transduce this rhythm to control gene expression. Here, we describe crystal and nuclear magnetic resonance structures of KaiB-KaiC,KaiA-KaiB-KaiC, and CikA-KaiB complexes. They reveal how the metamorphic properties of KaiB, a protein that adopts two distinct folds, and the post-adenosine triphosphate hydrolysis state of KaiC create a hub around which nighttime signaling events revolve, including inactivation of KaiA and reciprocal regulation of the mutually antagonistic signaling proteins, SasA and CikA.


Assuntos
Proteínas de Bactérias/química , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Cianobactérias/fisiologia , Proteínas Quinases/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/ultraestrutura , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/ultraestrutura , Cristalografia por Raios X , Cianobactérias/enzimologia , Hidrólise , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas Quinases/ultraestrutura , Multimerização Proteica
9.
Photochem Photobiol ; 93(1): 128-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27891621

RESUMO

Cryptochromes are evolutionarily related to the light-dependent DNA repair enzyme photolyase, serving as major regulators of circadian rhythms in insects and vertebrate animals. There are two types of cryptochromes in the animal kingdom: Drosophila-like CRYs that act as nonvisual photopigments linking circadian rhythms to the environmental light/dark cycle, and vertebrate-like CRYs that do not appear to sense light directly, but control the generation of circadian rhythms by acting as transcriptional repressors. Some animals have both types of CRYs, while others possess only one. Cryptochromes have two domains, the photolyase homology region (PHR) and an extended, intrinsically disordered C-terminus. While all animal CRYs share a high degree of sequence and structural homology in their PHR domains, the C-termini are divergent in both length and sequence identity. Recently, cryptochrome function has been shown to extend beyond its pivotal role in circadian clocks, participating in regulation of the DNA damage response, cancer progression and glucocorticoid signaling, as well as being implicated as possible magnetoreceptors. In this review, we provide a historical perspective on the discovery of animal cryptochromes, examine similarities and differences of the two types of animal cryptochromes and explore some of the divergent roles for this class of proteins.


Assuntos
Ritmo Circadiano , Criptocromos/fisiologia , Insetos/fisiologia , Luz , Vertebrados/fisiologia , Percepção Visual , Animais , Escuridão , Pigmentos Biológicos/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Tempo , Transcrição Gênica
10.
Mol Cell ; 58(5): 743-54, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25936801

RESUMO

The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.


Assuntos
Antígenos de Neoplasias/fisiologia , Antígenos Nucleares/fisiologia , Proteínas CLOCK/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos Nucleares/química , Proteínas CLOCK/metabolismo , Linhagem Celular Tumoral , Ritmo Circadiano , Sequência Conservada , Éxons , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Testículo/metabolismo
11.
J Biol Chem ; 290(12): 7707-21, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627682

RESUMO

The hypoxia-inducible factor complex (HIF-α·aryl hydrocarbon receptor nuclear translocator (ARNT)) requires association with several transcription coactivators for a successful cellular response to hypoxic stress. In addition to the conventional global transcription coactivator CREB-binding protein/p300 (CBP/p300) that binds to the HIF-α transactivation domain, a new group of transcription coactivators called the coiled-coil coactivators (CCCs) interact directly with the second PER-ARNT-SIM (PAS) domain of ARNT (ARNT PAS-B). These less studied transcription coactivators play essential roles in the HIF-dependent hypoxia response, and CCC misregulation is associated with several forms of cancer. To better understand CCC protein recruitment by the heterodimeric HIF transcription factor, we used x-ray crystallography, NMR spectroscopy, and biochemical methods to investigate the structure of the ARNT PAS-B domain in complex with the C-terminal fragment of a coiled-coil coactivator protein, transforming acidic coiled-coil coactivator 3 (TACC3). We found that the HIF-2α PAS-B domain also directly interacts with TACC3, motivating an NMR data-derived model suggesting a means by which TACC3 could form a ternary complex with HIF-2α PAS-B and ARNT PAS-B via ß-sheet/coiled-coil interactions. These findings suggest that TACC3 could be recruited as a bridge to cooperatively mediate between the HIF-2α PAS-B·ARNT PAS-B complex, thereby participating more directly in HIF-dependent gene transcription than previously anticipated.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transativadores/fisiologia , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Cristalografia por Raios X , Dimerização , Humanos , Proteínas Associadas aos Microtúbulos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
13.
Nature ; 505(7481): 103-7, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256734

RESUMO

Human body-surface epithelia coexist in close association with complex bacterial communities and are protected by a variety of antibacterial proteins. C-type lectins of the RegIII family are bactericidal proteins that limit direct contact between bacteria and the intestinal epithelium and thus promote tolerance to the intestinal microbiota. RegIII lectins recognize their bacterial targets by binding peptidoglycan carbohydrate, but the mechanism by which they kill bacteria is unknown. Here we elucidate the mechanistic basis for RegIII bactericidal activity. We show that human RegIIIα (also known as HIP/PAP) binds membrane phospholipids and kills bacteria by forming a hexameric membrane-permeabilizing oligomeric pore. We derive a three-dimensional model of the RegIIIα pore by docking the RegIIIα crystal structure into a cryo-electron microscopic map of the pore complex, and show that the model accords with experimentally determined properties of the pore. Lipopolysaccharide inhibits RegIIIα pore-forming activity, explaining why RegIIIα is bactericidal for Gram-positive but not Gram-negative bacteria. Our findings identify C-type lectins as mediators of membrane attack in the mucosal immune system, and provide detailed insight into an antibacterial mechanism that promotes mutualism with the resident microbiota.


Assuntos
Antibacterianos/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Intestinos/química , Lectinas Tipo C/metabolismo , Porinas/metabolismo , Antibacterianos/química , Antibacterianos/imunologia , Antibacterianos/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/química , Biomarcadores Tumorais/imunologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Proteínas Associadas a Pancreatite , Peptidoglicano/metabolismo , Fosfolipídeos/metabolismo , Porinas/antagonistas & inibidores , Porinas/química , Simbiose
14.
Proc Natl Acad Sci U S A ; 108(19): 7739-44, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21512126

RESUMO

Hypoxia-inducible factor (HIF) is the key transcriptional effector of the hypoxia response in eukaryotes, coordinating the expression of genes involved in oxygen transport, glycolysis, and angiogenesis to promote adaptation to low oxygen levels. HIF is a basic helix-loop-helix (bHLH)-PAS (PER-ARNT-SIM) heterodimer composed of an oxygen-labile HIF-α subunit and a constitutively expressed aryl hydrocarbon receptor nuclear translocator (ARNT) subunit, which dimerize via basic helix-loop-helix and PAS domains, and recruit coactivators via HIF-α C-terminal transactivation domains. Here we demonstrate that the ARNT PAS-B domain provides an additional recruitment site by binding the coactivator transforming acidic coiled-coil 3 (TACC3) in a step necessary for transcriptional responses to hypoxia. Structural insights from NMR spectroscopy illustrate how this PAS domain simultaneously mediates interactions with HIF-α and TACC3. Finally, mutations on ARNT PAS-B modulate coactivator selectivity and target gene induction by HIF in vivo, demonstrating a bifunctional role for transcriptional regulation by PAS domains within bHLH-PAS transcription factors.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ativação Transcricional
15.
Proc Natl Acad Sci U S A ; 107(17): 7722-7, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20382864

RESUMO

RegIII proteins are secreted C-type lectins that kill Gram-positive bacteria and play a vital role in antimicrobial protection of the mammalian gut. RegIII proteins bind their bacterial targets via interactions with cell wall peptidoglycan but lack the canonical sequences that support calcium-dependent carbohydrate binding in other C-type lectins. Here, we use NMR spectroscopy to determine the molecular basis for peptidoglycan recognition by HIP/PAP, a human RegIII lectin. We show that HIP/PAP recognizes the peptidoglycan carbohydrate backbone in a calcium-independent manner via a conserved "EPN" motif that is critical for bacterial killing. While EPN sequences govern calcium-dependent carbohydrate recognition in other C-type lectins, the unusual location and calcium-independent functionality of the HIP/PAP EPN motif suggest that this sequence is a versatile functional module that can support both calcium-dependent and calcium-independent carbohydrate binding. Further, we show HIP/PAP binding affinity for carbohydrate ligands depends on carbohydrate chain length, supporting a binding model in which HIP/PAP molecules "bind and jump" along the extended polysaccharide chains of peptidoglycan, reducing dissociation rates and increasing binding affinity. We propose that dynamic recognition of highly clustered carbohydrate epitopes in native peptidoglycan is an essential mechanism governing high-affinity interactions between HIP/PAP and the bacterial cell wall.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Parede Celular/química , Mucosa Intestinal/metabolismo , Lectinas Tipo C/metabolismo , Listeria monocytogenes/química , Modelos Moleculares , Peptidoglicano/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Parede Celular/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Lectinas Tipo C/química , Listeria monocytogenes/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Dados de Sequência Molecular , Proteínas Associadas a Pancreatite , Peptidoglicano/química
16.
J Biol Chem ; 284(22): 15184-92, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19324882

RESUMO

The aryl hydrocarbon receptor nuclear translocator (ARNT) serves as the obligate heterodimeric partner for bHLH-PAS proteins involved in sensing and coordinating transcriptional responses to xenobiotics, hypoxia, and developmental pathways. Although its C-terminal transactivation domain is dispensable for transcriptional activation in vivo, ARNT has recently been shown to use its N-terminal bHLH and/or PAS domains to interact with several transcriptional coactivators that are required for transcriptional initiation after xenobiotic or hypoxic cues. Here we show that ARNT uses a single PAS domain to interact with two coiled coil coactivators, TRIP230 and CoCoA. Both coactivators interact with the same interface on the ARNT PAS-B domain, located on the opposite side of the domain used to associate with the analogous PAS domain on its heterodimeric bHLH-PAS partner HIF-2alpha. Using NMR and biochemical studies, we identified the ARNT-interacting motif of one coactivator, TRIP230 as an LXXLL-like nuclear receptor box. Mutation of this motif and proximal sequences disrupts the interaction with ARNT PAS-B. Identification of this ARNT-coactivator interface illustrates how ARNT PAS-B is used to form critical interactions with both bHLH-PAS partners and coactivators that are required for transcriptional responses.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Sequência Conservada , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/química , Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transativadores/química
17.
J Biol Chem ; 284(8): 4881-8, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19095652

RESUMO

Members of the RegIII family of intestinal C-type lectins are directly antibacterial proteins that play a vital role in maintaining host-bacterial homeostasis in the mammalian gut, yet little is known about the mechanisms that regulate their biological activity. Here we show that the antibacterial activities of mouse RegIIIgamma and its human ortholog, HIP/PAP, are tightly controlled by an inhibitory N-terminal prosegment that is removed by trypsin in vivo. NMR spectroscopy revealed a high degree of conformational flexibility in the HIP/PAP inhibitory prosegment, and mutation of either acidic prosegment residues or basic core protein residues disrupted prosegment inhibitory activity. NMR analyses of pro-HIP/PAP variants revealed distinctive colinear backbone amide chemical shift changes that correlated with antibacterial activity, suggesting that prosegment-HIP/PAP interactions are linked to a two-state conformational switch between biologically active and inactive protein states. These findings reveal a novel regulatory mechanism governing C-type lectin biological function and yield new insight into the control of intestinal innate immunity.


Assuntos
Antibacterianos/química , Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Homeostase/fisiologia , Lectinas Tipo C/química , Proteínas/química , Animais , Antibacterianos/imunologia , Antibacterianos/metabolismo , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Humanos , Imunidade Inata/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/química , Intestinos/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Knockout , Ressonância Magnética Nuclear Biomolecular , Proteínas Associadas a Pancreatite , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas/imunologia , Proteínas/metabolismo
18.
Brain Res Mol Brain Res ; 122(2): 158-66, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15010208

RESUMO

Cryptochrome is a blue-light absorbing photopigment that has been proposed to act as a photoreceptor for a variety of nonvisual light-responsive tasks. While mouse models have suggested an important role for cryptochrome in nonvisual photoreception, there are no biochemical data demonstrating the functional photoreceptive capability of cryptochrome in mice. There are two models that describe the effect of cryptochrome on light responsive events: (1) cryptochrome is a photoreceptor or (2) cryptochrome is required for either normal phototransduction from the retina to the brain or for normal transcriptional regulation in the brain, irrespective of light. To differentiate between these two models, we have examined the integrity of the regulatory mechanism of c-fos in cryptochromeless cell lines and in the suprachiasmatic nucleus (SCN) of cryptochromeless mice. Photoinduction of c-fos mRNA in the SCN can be used as a marker for circadian photoreception/phototransduction and it is drastically reduced in mice lacking cryptochromes. Our results indicate that light-independent transcription regulatory system of c-fos is normal in cryptochromeless mice and that the reduced c-fos light responsiveness in the absence of cryptochromes is due to a loss of photoreceptor function.


Assuntos
Ritmo Circadiano/genética , Citocromos/genética , Proteínas de Drosophila , Proteínas do Olho , Transdução de Sinal Luminoso/genética , Vias Neurais/metabolismo , Células Fotorreceptoras de Invertebrados , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Relógios Biológicos/genética , Linhagem Celular , Criptocromos , Citocromos/deficiência , Flavoproteínas/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Modelos Animais , Vias Neurais/citologia , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G , Retina/citologia , Núcleo Supraquiasmático/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA