Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(3): e0230052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214327

RESUMO

Biallelic mutations in ACP5, encoding tartrate-resistant acid phosphatase (TRACP), have recently been identified to cause the inherited immuno-osseous disorder, spondyloenchondrodysplasia (SPENCD). This study was undertaken to characterize the eight reported missense mutations in ACP5 associated with SPENCD on TRACP expression. ACP5 mutant genes were synthesized, transfected into human embryonic kidney (HEK-293) cells and stably expressing cell lines were established. TRACP expression was assessed by cytochemical and immuno-cytochemical staining with a panel of monoclonal antibodies. Analysis of wild (WT) type and eight mutant stable cell lines indicated that all mutants lacked stainable enzyme activity. All ACP5 mutant constructs were translated into intact proteins by HEK-293 cells. The mutant TRACP proteins displayed variable immune reactivity patterns, and all drastically reduced enzymatic activity, revealing that there is no gross inhibition of TRACP biosynthesis by the mutations. But they likely interfere with folding thereby impairing enzyme function. TRACP exists as two isoforms. TRACP 5a is a less active monomeric enzyme (35kD), with the intact loop peptide and TRACP 5b is proteolytically cleaved highly active enzyme encompassing two subunits (23 kD and 16 kD) held together by disulfide bonds. None of the mutant proteins were proteolytically processed into isoform 5b intracellularly, and only three mutants were secreted in significant amounts into the culture medium as intact isoform 5a-like proteins. Analysis of antibody reactivity patterns revealed that T89I and M264K mutant proteins retained some native conformation, whereas all others were in "denatured" or "unfolded" forms. Western blot analysis with intracellular and secreted TRACP proteins also revealed similar observations indicating that mutant T89I is amply secreted as inactive protein. All mutant proteins were attacked by Endo-H sensitive glycans and none could be activated by proteolytic cleavage in vitro. In conclusion, determining the structure-function relationship of the SPENCD mutations in TRACP will expand our understanding of basic mechanisms underlying immune responsiveness and its involvement in dysregulated bone metabolism.


Assuntos
Doenças Autoimunes/patologia , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/patologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Substituição de Aminoácidos , Doenças Autoimunes/enzimologia , Doenças Autoimunes/genética , Glicosilação , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/genética , Proteólise , Fosfatase Ácida Resistente a Tartarato/química , Fosfatase Ácida Resistente a Tartarato/genética
2.
J Biol Chem ; 284(14): 9443-57, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19188364

RESUMO

Myo-inositol is an important constituent of membrane phospholipids and is a precursor for the phosphoinositide signaling pathway. It is synthesized from glucose 6-phosphate by myo-inositol-3-phosphate synthase (IP synthase), a homotrimer composed of a 68-kDa polypeptide in most mammalian tissues. It is a putative target for mood-stabilizing drugs such as lithium and valproate. Here, we show that the rat gene (Isyna1) encoding this enzyme generates a number of alternatively spliced transcripts in addition to the fully spliced form that encodes the 68-kDa subunit (the alpha isoform). Specifically, we identify a small 16-kDa subunit (the gamma(c) isoform) derived by an intron retention mechanism and provide evidence for its existence in rat tissues. The gamma(c) isoform is highly conserved in mammals, but it lacks the catalytic domain while retaining the NAD(+) binding domain. Both alpha and gamma(c) isoforms are predominantly expressed in many rat tissues and display apparent stoichiometry in purified enzyme preparations. An IP synthase polyclonal antibody not only detects the alpha and gamma(c) isoforms but also several other isoforms in pancreas, intestine, and testis suggesting that the holoenzyme is composed of unique subunits in various tissues. Interestingly, the alpha isoform is not expressed in the intestine. IP synthase activity assays using purified alpha and gamma(c) isoforms indicate that the latter negatively modulates alpha isoform activity, possibly by competing for NAD(+) molecules. Our findings have important ramifications for understanding the mood stabilization process and suggest that inositol biosynthesis is a highly regulated and dynamic process.


Assuntos
Regulação Enzimológica da Expressão Gênica , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Ativação Enzimática , Humanos , Liases Intramoleculares/genética , Liases Intramoleculares/isolamento & purificação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Alinhamento de Sequência , Transcrição Gênica/genética
3.
J Leukoc Biol ; 77(2): 209-18, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15542543

RESUMO

Human serum tartrate-resistant acid phosphatase exists as two enzyme isoforms (TRACP 5a and 5b), derived by differential, post-translational processing of a common gene product. Serum TRACP 5b is from bone-resorbing osteoclasts (OC) and becomes elevated in diseases of increased bone resorption. TRACP 5a is secreted by macrophages (MPhi) and dendritic cells (DC) and is increased in many patients with rheumatoid arthritis. Our purpose was to fully characterize the properties of human TRACP isoforms and to produce an antibody specific to TRACP 5a for use as a biomarker in chronic inflammatory diseases. Partially purified, natural serum TRACP isoforms and recombinant TRACP 5a (rTRACP 5a) were compared with respect to specific activity and subunit structure and presence of sialic acid. Mice were immunized with rTRACP 5a, and resulting hybridomas were screened for monoclonal antibody to serum TRACP 5a. One antibody, 220, was tested for its epitope specificity and use in various immunological techniques. rTRACP 5a had properties identical to serum TRACP 5a. Antibody 220 was specific for the trypsin-sensitive epitope in the loop peptide, present only in TRACP 5a. Antibody 220 was effective for specific immunoprecipitation, immunoassay, and immunoblot of TRACP 5a. Intact TRACP was present in MPhi, DC, and OC. TRACP 5a was the predominant isoform secreted by MPhi and DC, whereas TRACP 5b was the predominant isoform secreted by OC. TRACP isoforms 5a and 5b may have different functions inside and outside of monocyte-derived cells. Antibody 220 is an important resource for studies of the biosynthetic relationship among TRACP isoforms and of the significance of serum TRACP 5a as a marker in diseases of bone metabolism and inflammation.


Assuntos
Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Monócitos/enzimologia , Fosfatase Ácida/genética , Animais , Anticorpos Monoclonais/biossíntese , Células Cultivadas , Células Dendríticas/enzimologia , Epitopos/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/genética , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia , Osteoclastos/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Fosfatase Ácida Resistente a Tartarato
4.
Arch Biochem Biophys ; 431(1): 95-106, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15464731

RESUMO

Human myo-inositol 1-phosphate synthase (IP synthase; E.C. 5.5.1.4), encoded by ISYNA1, catalyzes the de novo synthesis of inositol 1-phosphate from glucose 6-phosphate. It is a potential target for mood-stabilizing drugs such as lithium and valproate. But, very little is known about the regulation of human IP synthase. Here, we have characterized the minimal promoter of ISYNA1 and show that it is upregulated by E2F1. Upregulation occurs in a dose-dependent fashion and can be suppressed by ectopic expression of Rb. EMSA and antibody supershift analysis identified a functional E2F binding motif at -117. Complex formation at this site was competed by an excess of unlabeled Sp1 oligo consistent with the -117 E2F site overlapping an Sp1 motif. Because the -117 E2F motif is not a high-affinity binding site, we propose that the upregulation of ISYNA1 occurs through the cooperative interaction of several low-affinity E2F binding motifs present in the minimal promoter.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Sequência de Bases , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Humanos , Fosfatos de Inositol/biossíntese , Dados de Sequência Molecular , Mio-Inositol-1-Fosfato Sintase/biossíntese , Deleção de Sequência , Fator de Transcrição Sp1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA