Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(2): e2300291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013664

RESUMO

Nannochloropsis oceanica is a microalga with relevant protein content, making it a potential source of bioactive peptides. Furthermore, it is also rich in fatty acids, with a special focus on eicosapentaenoic acid (EPA), an omega-3 fatty acid mainly obtained from marine animal sources, with high importance for human health. N. oceanica has a rigid cell wall constraining protein extraction, thus hydrolyzing it may help increase its components' extractability. Therefore, a Box-Behnken experimental design was carried out to optimize the hydrolysis. The hydrolysate A showed 67% ± 0.7% of protein, antioxidant activity of 1166 ± 63.7 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 379 µg protein mL-1 . The hydrolysate B showed 60% ± 1.8% of protein, antioxidant activity of 775 ± 13.0 µmol TE g-1 of protein and an ACE inhibition with an IC50 of 239 µg protein mL-1 . The by-product showed higher yields of total fatty acids when compared to "raw" microalgae, being 5.22% and 1%, respectively. The sustainable developed methodology led to the production of one fraction rich in bioactive peptides and another with interesting EPA content, both with value-added properties with potential to be commercialized as ingredients for different industrial applications, such as functional food, supplements, or cosmetic formulations.


Assuntos
Ácido Eicosapentaenoico , Microalgas , Animais , Humanos , Ácido Eicosapentaenoico/metabolismo , Hidrólise , Antioxidantes/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Ácidos Graxos/metabolismo , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA