Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Ageing Res Rev ; : 102340, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759892

RESUMO

Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124332, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676982

RESUMO

Studies on the interactions between ligands and proteins provide insights into how a possible medication alters the structures and activities of the target or carrier proteins. The natural flavonoid aglycone Chrysin (CHR) has demonstrated anti-inflammatory, antioxidant, antiapoptotic, neuroprotective, and antineoplastic effects, both in vitro and in vivo. In this work, we investigated the impact of CHR binding on the as-yet-unexplored conformation, dynamics, and unfolding mechanism of human serum albumin (HSA). We determined CHR binding to HSA domain-II with the association constant (Ka) of 2.70 ± 0.21 × 105 M-1. The urea-induced sequential unfolding mechanism of HSA was used to elucidate the debatable binding location of CHR. CHR binding induced both secondary and tertiary structural alterations in the protein as studied by far-UV circular dichroism and intrinsic fluorescence spectroscopy. Red edge excitation shift (REES) indicated a decrease in conformational dynamics of the protein on the complex formation. This suggested an ordered compact and spatial arrangement of the CHR-boundmolecule. The binding of CHR was found to significantly modulate the urea-induced unfolding pathway of HSA. Urea-induced unfolding pathway of HSA became a two-state process (N-U) from a three-state process (N-I-U). The interaction of CHR is found to increase the thermal stability of the protein by ∼4 °C. This study focuses on the fundamental sciences and demonstrates how prospective medication compounds can alter the dynamics and stability of protein structure.


Assuntos
Flavonoides , Ligação Proteica , Desdobramento de Proteína , Albumina Sérica Humana , Humanos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Desdobramento de Proteína/efeitos dos fármacos , Ureia/farmacologia , Ureia/química , Dicroísmo Circular , Espectrometria de Fluorescência , Conformação Proteica
3.
Bioorg Chem ; 147: 107336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636431

RESUMO

In this series we report the structure-based design, synthesis and anticancer activity evaluation of a series of eighteen cyclopropylamine containing cyanopyrimidine derivatives. The computational predictions of ADMET properties revealed appropriate aqueous solubility, high GI absorption, no BBB permeability, no Lipinski rule violations, medium total clearance and no mutagenic, tumorigenic, irritant and reproductive toxic risks for most of the compounds. Compounds VIIb, VIIi and VIIm emerged as the most potent anticancer agents among all compounds evaluated against 60 cancer cell lines through the one-dose (10 µM) sulforhodamine B assay. Further, the multiple dose cell viability studies against cancer cell lines MOLT-4, A549 and HCT-116 revealed results consistent with the one-dose assay, besides sparing normal cell line HEK-293. The three potent compounds also displayed potent LSD1 inhibitory activity with IC50 values of 2.25, 1.80 and 6.08 µM. The n-propyl-thio/isopropyl-thio group bonded to the pyrimidine ring and unsubstituted/ electron donating group (at the para- position) attached to the phenyl ring resulted in enhanced anticancer activity. However, against leukemia cancer, the electron donating isopropyl group remarkably enhanced anti-cancer activity. Our findings provide important leads, which merit further optimization to result in better cancer therapeutics.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desmetilases , Pirimidinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Linhagem Celular Tumoral , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos
4.
Biochem Pharmacol ; 224: 116244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685280

RESUMO

Traumatic brain injury (TBI) triggers a bevy of changes including mitochondrial dysfunction, apoptosis, oxidative stress, neurobehavioural impairment, and neuroinflammation, among others. Dantrolene (DNT), a muscle relaxant which inhibits intracellular Ca2+ signaling from the ER, has been repurposed as a potential neuroprotective agent in various neurological diseases. However, there have been limited studies on whether it can mitigate TBI-induced deficits and restore impaired mitochondrial dynamics. This study sought to evaluate whether Dantrolene can potentially provide neuroprotection in an in vivo model of TBI. Male wistar rats subjected to TBI were treated with DNT (10 mg/kg) 1 h and 12 h post surgery. Animals were assessed 24 h post-TBI to evaluate neurobehavioural deficits and cerebral edema. We evaluated the protein expressions of apoptotic, autophagic, and neuroinflammatory markers by immunoblotting, as well as Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) via Flow Cytometry to ascertain the effects of DNT on TBI. We further analysed immunofluorescence staining with Glial Fibrillary Acidic Protein (GFAP) and immunohistochemistry with NF-κß to investigate neuroinflammation. H&E staining was also performed post-TBI. Our findings revealed DNT administration inhibits mitochondria-mediated apoptotis and reduces heightened oxidative stress. DNT treatment was also found to reverse neurobehavioural impairments and offer neuroprotection by preserving neuronal architechture. We also demonstrated that DNT inhibits neuronal autophagy and alleviates neuroinflammation following TBI by modulating the NF-κß/Akt signaling pathway. Thus, our results suggest a novel application of DNT in ameliorating the multitude of deficits induced by TBI, thereby conferring neuroprotection.


Assuntos
Lesões Encefálicas Traumáticas , Dantroleno , Mitocôndrias , NF-kappa B , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Animais , Dantroleno/farmacologia , Dantroleno/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Masculino , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relaxantes Musculares Centrais/farmacologia , Relaxantes Musculares Centrais/uso terapêutico
5.
J Biomol Struct Dyn ; : 1-16, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682862

RESUMO

In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.Communicated by Ramaswamy H. Sarma.


Drug repurposing has overcome failures in drug discovery and has reduced the overall time and cost of drug discovery and development.We examined the effect of screened antibiotics, ceftazidime (CZD), cefotaxime (CXM), and vancomycin (VNC) on lysozyme aggregation under two solution conditions.These antibiotics inhibit/modulate the aggregation reactions by strongly interacting with aggregation-prone intermediate and modulation of conformation and stability.Our study puts forward with caution two cephalosporins for aggregation inhibition studies.

6.
Nutrients ; 15(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836581

RESUMO

Phytochemicals are abundantly occurring natural compounds extracted from plant sources. Rosmarinic acid (RA) is an abundant phytochemical of Lamiaceae species with various therapeutic implications for human health. In recent years, natural compounds have gained significant attention as adjuvant and complementary therapies to existing medications for various diseases. RA has gained popularity due to its anti-inflammatory and antioxidant properties and its roles in various life-threatening conditions, such as cancer, neurodegeneration, diabetes, etc. The present review aims to offer a comprehensive insight into the multifaceted therapeutic properties of RA, including its potential as an anticancer agent, neuroprotective effects, and antidiabetic potential. Based on the available evidences, RA could be considered a potential dietary component for treating various diseases, including cancer, diabetes and neurodegenerative disorders.


Assuntos
Diabetes Mellitus , Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Cinamatos/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Ácido Rosmarínico
7.
Future Med Chem ; 15(18): 1669-1685, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37732405

RESUMO

Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 µM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 µM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 µM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Amidas/farmacologia , Cumarínicos/farmacologia , Epigênese Genética , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células , Ácidos Hidroxâmicos/farmacologia , Desenho de Fármacos , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
8.
Mol Immunol ; 160: 1-11, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285685

RESUMO

Spontaneous preterm birth (sPTB) is a global health concern and it is the most prevalent cause of infant mortality and morbidity with occurrence rate of 5 - 18% worldwide. Studies suggest infection and infection-driven activation of inflammatory responses are the potential risk factors for sPTB. MicroRNAs (miRNAs) are thought to control the expression of several immune genes, making them crucial components of the intricate immune regulatory network and the dysregulation of miRNAs in placenta has been associated to several pregnancy-related complications. However, studies on possible role of miRNAs in immunomodulation of cytokine signalling in infection-associated sPTB are scarce. Present study aimed to investigate expression/ correlation of a few circulating miRNAs (miR-223, -150-5p, -185-5p, -191-5p), miRNA target genes and associated cytokines in sPTB women found infected with Chlamydia trachomatis/ Mycoplasma hominis/ Ureaplasma urealyticum. Non-heparinized blood and placental sample were collected from 140 sPTB and 140 term women visiting Safdarjung hospital, New Delhi (India) for conducting PCR and RT-PCR for pathogen detection and miRNA/ target gene/ cytokine expression, respectively. Common target genes of differentially expressed miRNAs were obtained from databases. The correlation between select target genes/ cytokines and serum miRNAs was determined by Spearman's rank correlation. 43 sPTB were infected with either pathogen and a significant upregulation of serum miRNAs was observed. However, miR-223 and 150-5p showed maximum fold-change (4.78 and 5.58, respectively) in PTB versus control group. IL-6ST, TGF-ß R3 and MMP-14 were important target genes among 454 common targets, whereas, IL-6 and TGF-ß were associated cytokines. miR-223 and 150-5p showed significant negative correlation with IL-6ST/ IL-6/ MMP-14 and positive correlation with TGF-ß R3/ TGF-ß. A significant positive correlation was found between IL-6ST and IL-6, TGF-ß R3 and TGF-ß. However, miR-185-5p and 191-5p were not significantly correlated. Although post-transcriptional validation is required, yet on the basis of mRNA findings, the study concludes that miR-223 and 150-5p are apparently of clinical importance in regulation of inflammatory processes during infection-associated sPTB.


Assuntos
MicroRNAs , Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Gravidez , Metaloproteinase 14 da Matriz , Nascimento Prematuro/genética , Interleucina-6 , Placenta , MicroRNAs/genética , Fator de Crescimento Transformador beta , Citocinas , Imunomodulação
9.
ACS Omega ; 8(17): 14985-15002, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151537

RESUMO

Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.

10.
Placenta ; 138: 10-19, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146535

RESUMO

INTRODUCTION: Spontaneous preterm birth (sPTB) is a global health issue. Studies suggest infections are chiefly associated with sPTB and galectins (gals) play a role in regulation of innate and adaptive maternal immune response against pathogens during sPTB. The aim of this study was to describe the gene expression of gal -1, -3, -8, -9, -13 in relation to gene expression of cyclooxygenase-2 (COX-2) and the cytokines IL-8, IL-10, TNF-α, IFN-ϒ in the setting of sPTB and confirmed infection with Chlamydia trachomatis, Mycoplasma hominis, and Ureaplasma urealyticum. METHODS: Placental samples were collected from 120 term control and 120 sPTB pregnancies. PCR was used to detect specific pathogens. Gene expression of galectins, cytokines, and COX-2 was performed using real time qPCR. RESULTS: Fold-change expression of gal -1, -3, -8, -9, -13 was 5.13, 6.11, 1.14, 5.23 and 7.16 (p<0.001), respectively; while IL-10, IL-8, TNF-α, IFN-ϒ and COX-2 was 6.29, 6.55, 6.35, 6.36 and 2.73-fold upregulated (p<0.05), respectively in infected sPTB. Gal-1 was positively correlated with IL-10 (r=0.49, p=0.003) while gal-3 showed significant correlation with IL-8 (r=0.42, p=0.0113), TNF-α (r=0.65, p=< 0.001) and COX-2 (r=0.72, p=0.001). However, gal-8 was not significantly correlated with any cytokine. Gal-9, -13 were negatively correlated with IFN-ϒ (r=-0.45, p=0.006) and IL-8 (r=-0.39, p=0.018). DISCUSSION: Gal-1, -9, -13 are anti-inflammatory and might play role in immune-tolerance while gal-3 is pro-inflammatory and possibly responsible for immunogenic response, having potential to anticipate the clinical beginning of preterm labour during infection.


Assuntos
Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Interleucina-10 , Placenta , Fator de Necrose Tumoral alfa , Ciclo-Oxigenase 2 , Interleucina-8 , Citocinas , Galectinas
11.
Mol Biol Rep ; 50(6): 4907-4915, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37072652

RESUMO

BACKGROUND: Oxidative stress generated by Chlamydia trachomatis infection is associated with reproductive complications such as recurrent spontaneous abortion. Aim of prospective study was to evaluate whether single nucleotide polymorphisms (SNPs) of SOD1 and SOD2 gene are associated with C. trachomatis-infected recurrent spontaneous abortion (RSA). METHODS: 150 patients with history of RSA and 150 patients with history of successful deliveries were recruited from Department of Obstetrics and Gynecology, Safdarjung hospital, New Delhi, India. Urine and non-heparinized blood samples were collected and C. trachomatis was detected by polymerase chain reaction (PCR). Using qualitative real time PCR, SNPs rs4998557 (SOD1) and rs4880 (SOD2) were screened in enrolled patients. Level of 8-hydroxyguanosine (8-OHdG), 8-isoprostane (8-IP), progesterone and estrogen was determined by enzyme-linked immunosorbent assays and correlated with SNPs. RESULTS: Significant differences were found in frequency of AA genotype of SOD1 gene among RSA patients versus controls, (82% and 54.66%, respectively; p = 0.02; OR 0.40; CI 95%). Frequency of AA genotype of SOD1 gene among RSA patients with C. trachomatis infection was 87.33%, while in uninfected RSA patients was 71.33% (p < 0.0001; OR 8; CI 95%). No significant relation was found between SOD2 (rs4880) genotype and RSA. Furthermore, significant increase in 8-OHdG, 8-IP and estrogen and significant decrease in progesterone was observed among patients carrying AA genotype. CONCLUSIONS: Findings suggest the clinical importance of AA genotype along with 8-OHdG, 8-IP and estrogen and progesterone in screening C. trachomatis-infected RSA women.


Assuntos
Aborto Habitual , Aborto Espontâneo , Infecções por Chlamydia , Gravidez , Feminino , Humanos , Aborto Espontâneo/genética , Chlamydia trachomatis/genética , Superóxidos , Progesterona , Estudos Prospectivos , Superóxido Dismutase-1/genética , Aborto Habitual/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Estrogênios , Estudos de Casos e Controles , Infecções por Chlamydia/genética , Infecções por Chlamydia/complicações
12.
Curr Top Med Chem ; 23(14): 1319-1339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703601

RESUMO

Coronavirus disease (COVID-19) was reported to be transmitted from bats to humans and, became a pandemic in 2020. COVID-19 is responsible for millions of deaths worldwide and still, the numbers are increasing. Further, despite the availability of vaccines, mutation in the virus continuously poses a threat of re-emergence of the more lethal form of the virus. So far, the repurposing of drugs has been exercised heavily for the identification of therapeutic agents against COVID-19, which led FDA to approve many drugs for the same e.g., remdesivir, favipiravir, ribavirin, etc. The anti-COVID drugs explored via other approaches include nirmatrelvir (used in combination with ritonavir as Paxlovid), tixagevimab and cilgavimab (both used in combination with each other) and others. However, these approved drugs failed to achieve a significant clinical outcome. Globally, natural bioactive have also been explored for anti-COVID-19 effects, based on their traditional medicinal values. Although the clinical findings suggest that FDA-approved drugs and natural bioactives can help reducing the overall mortality rate but the significant clinical outcome was not achieved. Therefore, the focus has been shifted towards new drug development. In line with that, a lot of work has been done and still going on to explore heterocyclic compounds as potent anti- COVID-19 drugs. Several heterocyclic scaffolds have been previously reported with potent antiinflammatory, anticancer, anti-viral, antimicrobial and anti-tubercular effects. Few of them are under consideration for clinical trials whereas others are under preclinical investigation. Hence, this review discusses the evidence of rationally designed and tested heterocyclic compounds acting on different targets against COVID-19. The present article will help the researches and will serve as a pivotal resource in the design and development of novel anti-COVID-19 drugs.


Assuntos
COVID-19 , Compostos Heterocíclicos , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico
13.
Int J Biol Macromol ; 227: 884-895, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549619

RESUMO

As the primary bioactive compound of glycyrrhiza rhizome, the triterpene glycoside conjugate Glycyrrhizic acid (GA) has demonstrated neuroprotective effects in vivo. This study evaluates the effectiveness of GA as an inhibitor of GuHCl-induced amyloid aggregation of hen egg white lysozyme (HEWL). Fibril formation as measured by Thioflavin-T fluorescence, 900 light scattering, and 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence illustrated ∼90 % prevention of fibrils at [GA]/[HEWL] ≥2:1. Images of Transmission electron microscopy evidence for the absence of any fibril or amorphous aggregation products. The spectral characteristics of soluble HEWL were in close resemblance to unfolded monomer. Computational and fluorescence investigations performed to analyse GA-HEWL interactions demonstrated slightly higher affinity of GA to unfolded HEWL and aggregation-prone regions. The likely mechanism of monomer level aggregation prevention by GA as dermined by computational, stability, and ANS experiments illustrated that GA modulated the compactness, solvent-accessible surface, and solvent-exposed hydrophobic surfaces of aggregation-prone state of HEWL. Our findings corroborate GA as an effective inhibitor of HEWL amyloid formation. To our knowledge, GA interaction-induced inhibition of aggregation-prone states has not been previously discussed. GA's modulation of aggregation-prone states of disease-related proteins will successfully develop GA as an amyloid inhibitor for clinical trials of amyloidosis and neurodegenerative illnesses.


Assuntos
Ácido Glicirrízico , Muramidase , Animais , Muramidase/química , Ácido Glicirrízico/farmacologia , Amiloide/química , Proteínas Amiloidogênicas , Solventes , Galinhas/metabolismo
14.
Curr Mol Med ; 23(9): 876-888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986537

RESUMO

Breast cancer is the most commonly diagnosed type of cancer and ranks second among cancer that leads to death. From becoming the foremost reason for global concern, this multifactorial disease is being treated by conventional chemotherapies that are associated with severe side effects, with chemoresistance being the ruling reason. Exemestane, an aromatase inhibitor that has been approved by the US FDA for the treatment of breast cancer in post-menopausal women, acts by inhibiting the aromatase enzyme, in turn, inhibiting the production of estrogen. However, the clinical application of exemestane remains limited due to its poor aqueous solubility and low oral bioavailability. Furthermore, the treatment regimen of exemestane often leads to thinning of bone mineral density. Thymoquinone, a natural compound derived from the oil of the seeds of Nigella sativa Linn, possesses the dual property of being a chemosensitizer and chemotherapeutic agent. In addition, it has been found to exhibit potent bone protection properties, as evidenced by several studies. To mitigate the limitations associated with exemestane and to deliver to the cancerous cells overcoming chemoresistance, the present hypothesis has been put forth, wherein a natural chemosensitizer and chemotherapeutic agent thymoquinone will be incorporated into a lipid nanocarrier along with exemestane for combinatorial delivery to cancer cells. Additionally, thymoquinone being bone protecting will help in ousting the untoward effect of exemestane at the same time delivering it to the required malignant cells, safeguarding the healthy cells, reducing the offsite toxicity, and providing potent synergistic action.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Nanomedicina , Inibidores da Aromatase/efeitos adversos , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico
15.
Biomaterials ; 289: 121805, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162213

RESUMO

Treatment of Ischemic Stroke is inordinately challenging due to its complex aetiology and constraints in shuttling therapeutics across blood-brain barrier. Ropinirole hydrochloride (Rp), a propitious neuroprotectant with anti-oxidant, anti-inflammatory, and anti-apoptotic properties (3A) is repurposed for remedying ischemic stroke and reperfusion (I/R) injury. The drug's low bioavailability in brain however, limits its therapeutic efficacy. The current research work has reported sub-100 nm gamma-L-Glutamyl-L-Cysteine coated Human Serum Albumin nanoparticles encapsulating Rp (C-Rp-NPs) for active targeting in ischemic brain to encourage in situ activity and reduce unwanted toxicities. Confocal microscopy and brain distribution studies confirmed the enhanced targeting potentiality of optimized C-Rp-NPs. The pharmacokinetics elucidated that C-Rp-NPs could extend Rp retention in systemic circulation and escalate bioavailability compared with free Rp solution (Rp-S). Additionally, therapeutic assessment in transient middle cerebral occlusion (tMCAO) model suggested that C-Rp-NPs attenuated the progression of I/R injury with boosted therapeutic index at 1000 times less concentration compared to Rp-S via reinstating neurological and behavioral deficits, while reducing ischemic neuronal damage. Moreover, C-Rp-NPs blocked mitochondrial permeability transition pore (mtPTP), disrupted apoptotic mechanisms, curbed oxidative stress and neuroinflammation, and elevated dopamine levels post tMCAO. Thus, our work throws light on fabrication of rationally designed C-Rp-NPs with enormous clinical potential.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Antioxidantes/uso terapêutico , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Cisteína/uso terapêutico , Dopamina/uso terapêutico , Humanos , Indóis , Infarto da Artéria Cerebral Média/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Albumina Sérica Humana/uso terapêutico
16.
Neurotoxicology ; 92: 91-101, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868426

RESUMO

Oxidative damage and mitochondrial dysfunction are two prominent pathological features and gradually understood as important pathogenic events for neurodegenerative diseases, including aging and Alzheimer's disease (AD). The present study was aimed to explore the prolonged treatment of pramipexole (PPX) following amyloid beta (Aß1-42)-induced cognitive impairments , oxidative stress, and mitochondrial dysfunction in a Wistar rat model. We have found that PPX (1.0 mg/kg, b.wt.) improves cognitive impairments of Aß1-42-infused rats in Morris water maze. At the same time, PPX attenuated Aß1-42-induced oxidative damage and increased reduced-glutathione content level, decreased lipid peroxidation rate and suppressed the activity of acetylcholinesterase and shows antioxidant effects. Additionally, PPX treatment has shown inhibition of mitochondrial reactive oxygen species production and restored mitochondrial membrane potential, oxidative phosphorylation, and enhanced ATP levels in Aß1-42 rats. Furthermore, PPX treatment reduced bioenergetics loss and dynamics alterations by upregulating PGC-1α protein level and mitigating translocation of Bax and Drp-1 to mitochondria and cytochrome-c release into the cytoplasm. PPX also increased mitofusin-2 protein expression, a basic element of mitochondrial fusion process. We conclude that remedial role of PPX in mitigating oxidative damage and mitochondrial perturbation that are modulated in Aß1-42 rats may have the propensity in AD pathogenesis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Citocromos/metabolismo , Citocromos/farmacologia , Glutationa/metabolismo , Hipocampo , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Mitocôndrias , Estresse Oxidativo , Fragmentos de Peptídeos , Pramipexol/efeitos adversos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
ACS Omega ; 7(23): 19122-19130, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721911

RESUMO

Neurosteroids are apparent to be connected in the cerebral ischemic injury for their potential neuroprotective effects. We previously demonstrated that progesterone induces neuroprotection via the mitochondrial cascade in the cerebral ischemic stroke of rodents. Here, we sought to investigate whether or not pregnenolone, a different neurosteroid, can protect the ischemic injury in the transient middle cerebral artery occlusion (tMCAO) rodent model. Male Wistar rats were chosen for surgery for inducing stroke using the tMCAO method. Pregnenolone (2 mg/kg b.w.) at 1 h postsurgery was administered. The neurobehavioral tests and (TTC staining) 2, 3, 5-triphenyl tetrazolium chloride staining were performed after 24 h of the surgery. The mitochondrial membrane potential and reactive oxygen species (ROS) were measured using flow cytometry. Oxygraph was used to examine mitochondrial bioenergetics. The spectrum of neurobehavioral tests and 2, 3, 5-triphenyltetrazolium chloride staining showed that pregnenolone enhanced neurological recovery. Pregnenolone therapy after a stroke lowered mitochondrial ROS following ischemia. Our data demonstrated that pregnenolone was not able to inhibit mitochondrial permeability transition pores. There was no effect on mitochondrial bioenergetics such as oxygen consumption and respiratory coupling. Overall, the findings demonstrated that pregnenolone reduced the neurological impairments via reducing mitochondria ROS but not through the inhibition of the mitochondria permeability transition pore (mtPTP).

18.
ACS Omega ; 7(4): 3192-3202, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35128232

RESUMO

Background : Titanium dioxide (TiO2) nanoparticles are among the largely manmade nanomaterials worldwide and are broadly used as both industrial and user products. The primary target site for several nanoparticles is the liver, including TiO2 nanoparticles (TNPs), exposed directly or indirectly through ingestion of contaminated water, food, or animals and elevated environmental contamination. Oxidative stress is a known facet of nanoparticle-induced toxicity, including TNPs. Mitochondria are potential targets for nanoparticles in several types of toxicity, such as hepatotoxicity. Nevertheless, its causal mechanism is still controversial due to scarcity of literature linking the role of mitochondria-mediated TNP-induced hepatotoxicity. Aim : The objective of the current study was to evaluate the relation of mitochondrial oxidative stress and respiratory chain mechanisms with TNP-induced mitochondrial dysfunction in vitro, and explore the hepatoprotective effect of quercetin (QR), which is a polyphenolic flavonoid abundant in fruits and vegetables with known antioxidant properties, on TNP-induced mitochondrial oxidative stress and disturbance in respiratory chain complex enzymes in the liver of rats. Results: Enzymatic and non-enzymatic antioxidant levels, oxidative stress markers, and mitochondrial complexes were assessed with regard to TNP-induced hepatotoxicity. The depleted lipid peroxidation levels and protein carbonyl content, in mitochondria, induced by TNPs were restored significantly by pretreatment with QR. QR modulated the altered non-enzymatic and enzymatic antioxidants and mitochondrial complex enzymes. Conclusion : Based on the findings, we conclude that QR, which mitigates oxidative stress caused by mitochondrial dysfunction, holds promising capability to potentially diminish TNP-induced adverse effects in the liver.

19.
Life Sci ; 293: 120338, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065167

RESUMO

BACKGROUND AND PURPOSE: Ischemic reperfusion (I/R) injury causes a wide array of functional and structure alternations of mitochondria, associated with oxidative stress and increased the severity of injury. Despite the previous evidence for N-acetyl-L-cysteine (NAC) provide neuroprotection after I/R injury, it is unknown to evaluate the effect of NAC on altered mitochondrial autophagy forms an essential axis to impaired mitochondrial quality control in cerebral I/R injury. METHODS: Male wistar rats subjected to I/R injury were used as transient Middle Cerebral Artery Occlusion (tMCAO) model. After I/R injury, the degree of cerebral tissue injury was detected by infarct volume, H&E staining and behavioral assessment. We also performed mitochondrial reactive oxygen species and mitochondrial membrane potential by flow cytometry and mitochondrial respiratory complexes to evaluate the mitochondrial dysfunction. Finally, we performed the western blotting analysis to measure the apoptotic and autophagic marker. RESULTS: We found that NAC administration significantly ameliorates brain injury, improves neurobehavioral outcome, decreases neuroinflammation and mitochondrial mediated oxidative stress. We evaluated the neuroprotective effect of NAC against neuronal apoptosis by assessing its ability to sustained mitochondrial integrity and function. Further studies revealed that beneficial effects of NAC is through targeting the mitochondrial autophagy via regulating the GSK-3ß/Drp1mediated mitochondrial fission and inhibiting the expression of beclin-1 and conversion of LC3, as well as activating the p-Akt pro-survival pathway. CONCLUSION: Our results suggest that NAC exerts neuroprotective effects to inhibit the altered mitochondrial changes and cell death in I/R injury via regulation of p-GSK-3ß mediated Drp-1 translocation to the mitochondria.


Assuntos
Acetilcisteína/farmacologia , Autofagia/efeitos dos fármacos , Isquemia Encefálica/prevenção & controle , Dinaminas/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Acetilcisteína/uso terapêutico , Animais , Autofagia/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Dinaminas/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
20.
J Biomol Struct Dyn ; 40(14): 6350-6362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33565370

RESUMO

Sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) signaling regulates numerous diseases such as cancer, diabetes, and inflammation-related ailments, rheumatoid arthritis, atherosclerosis, and multiple sclerosis. The importance of SphK1 in chemo-resistance has been extensively explored in breast, lung, colon, and hepatocellular carcinomas. SphK1 is considered an attractive drug target for the development of anticancer therapy. New drug molecules targeting the S1P signaling are required owing to its pleiotropic nature and association with multiple downstream targets. Here, we have investigated the binding affinity and SphK1 inhibitory potential of cinchonine and colcemid using a combined molecular docking and simulation studies followed by experimental analysis. These compounds bind to SphK1 with a significantly high affinity and subsequently inhibit kinase activity (IC50 7-9 µM). Further, MD simulation studies revealed that both cinchonine and colcemid bind to the residues at the active site pocket of SphK1 with several non-covalent interactions, which may be responsible for inhibiting its kinase activity. Besides, the binding of cinchonine and colcemid causes substantial conformational changes in the structure of SphK1. Taken together, cinchonine and colcemid may be implicated in designing potential drug molecules with improved affinity and specificity for SphK1 targeting anticancer therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Alcaloides de Cinchona , Demecolcina , Simulação de Acoplamento Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA