Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114479

RESUMO

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Criança , Mutação , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas/patologia , Família , Proteínas de Transporte/genética , Proteínas Nucleares/genética
3.
Clin Neurol Neurosurg ; 170: 27-33, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29723732

RESUMO

OBJECTIVES: The Leucine-rich glioma inactivated 1 (LGI1) protein is thought to be implicated in malignant progression of glioma tumors, and mutations in the encoding gene, LGI1, cause autosomal dominant lateral temporal epilepsy, a genetic focal epilepsy syndrome. The aim of this study was to investigate the possible involvement of LGI1 in high-grade glioma-associated epilepsy by analyzing its expression in tumor specimens of patients with and without epilepsy and by searching for LGI1 autoantibodies in the sera these patients. PATIENTS AND METHODS: We examined tumor tissue samples from 24 patients with high-grade gliomas (12 with and 12 without epilepsy) by immunoblot and detected variable amounts of LGI1 in tumor tissues from 9/24 (37%) patients. RESULTS: LGI1 was detected in 7/12 (58%) patients with epilepsy and in 2/12 (16%) patients without epilepsy (p = 0.0894; Fisher's exact test). Moreover, testing blood sera of five patients for antibodies against LGI1 revealed LGI1 autoantibodies in two patients, both suffering from epilepsy and expressing LGI1 in tumor tissue. CONCLUSION: Our findings suggest that there may be a preferential expression of LGI1 in high-grade glioma tumors of patients with epilepsy. We also unveil the presence of serum LGI1 autoantibodies in some patients with high-grade gliomas, where they might play an epileptogenic role.


Assuntos
Astrocitoma/sangue , Autoanticorpos/sangue , Neoplasias Encefálicas/sangue , Epilepsia do Lobo Temporal/sangue , Glioblastoma/sangue , Proteínas/metabolismo , Adulto , Idoso , Astrocitoma/diagnóstico , Astrocitoma/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioma/sangue , Glioma/diagnóstico , Glioma/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Proteínas/genética , Adulto Jovem
4.
Neurology ; 89(16): 1691-1697, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28931642

RESUMO

OBJECTIVE: To explore the course of Unverricht-Lundborg disease (EPM1) and identify the risk factors for severity, we investigated the time course of symptoms and prognostic factors already detectable near to disease onset. METHODS: We retrospectively evaluated the features of 59 Italian patients carrying the CSTB expansion mutation, and coded the information every 5 years after the disease onset in order to describe the cumulative time-dependent probability of reaching disabling myoclonus, relevant cognitive impairment, and inability to work, and evaluated the influence of early factors using the log-rank test. The risk factors were included in a Cox multivariate proportional hazards regression model. RESULTS: Disabling myoclonus occurred an average of 32 years after disease onset, whereas cognitive impairment occurred a little later. An age at onset of less than 12 years, the severity of myoclonus at the time of first assessment, and seizure persistence more than 10 years after onset affected the timing of disabling myoclonus and cognitive decline. Most patients became unable to work years before the appearance of disabling myoclonus or cognitive decline. CONCLUSIONS: A younger age at onset, early severe myoclonus, and seizure persistence are predictors of a more severe outcome. All of these factors may be genetically determined, but the greater hyperexcitability underlying more severe seizures and myoclonus at onset may also play a role by increasing cell damage due to reduced cystatin B activity.


Assuntos
Síndrome de Unverricht-Lundborg/diagnóstico , Síndrome de Unverricht-Lundborg/fisiopatologia , Adolescente , Adulto , Idade de Início , Análise de Variância , Anticonvulsivantes/uso terapêutico , Catepsina B/genética , Eletroencefalografia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Fenitoína/uso terapêutico , Prognóstico , Estudos Retrospectivos , Síndrome de Unverricht-Lundborg/tratamento farmacológico , Síndrome de Unverricht-Lundborg/genética , Ácido Valproico/uso terapêutico , Adulto Jovem
5.
J Neurol ; 264(7): 1426-1433, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28620717

RESUMO

The C9orf72 repeat expansion (RE) is one of the most frequent causative mutations of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, it is still unclear how the C9orf72 RE can lead to a heterogeneous phenotype. Several reports have shown the coexistence of mutations in multiple ALS/FTD causative genes in the same family, suggesting an oligogenic etiology for ALS and FTD. Our aim was to investigate this phenomenon in an Italian group of ALS/FTD pedigrees carrying the C9orf72 RE. We included 11 subjects from 11 pedigrees with ALS/FTD and the C9orf72 RE. Mutation screening of FUS, SOD1 and TARDBP genes was performed by direct sequencing. A dementia-specific custom-designed targeted next-generation sequencing panel was used for screening dementia-associated genes mutations. We found genetic variants in additional ALS or dementia-related genes in four pedigrees, including the p.V47A variant in the TYROBP gene. As a group, double mutation carriers displayed a tendency toward a younger age at onset and a higher frequency of positive familiar history and of parkinsonism. Our observation supports the hypothesis that the co-presence of mutations in different genes may be relevant for the clinical expression of ALS/FTD and of their oligogenic nature.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Idoso , Proteínas de Ligação a DNA/genética , Família , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Proteína FUS de Ligação a RNA/genética , Índice de Gravidade de Doença , Superóxido Dismutase-1/genética
6.
Epilepsia ; 54 Suppl 7: 86-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24099060

RESUMO

PURPOSE: To present new information on the semiology and short-term evolution of seizures associated with primary brain tumors (PBTs) in a prospective study. METHODS: This study is a section of the PERNO study--Project of Emilia Romagna Region on Neuro-Oncology, the main aim of which is to collect prospectively all cases of PBTs occurring in the Emilia-Romagna region, northeast Italy (3,983,346 population) from January 2009 to December 2011, to allow epidemiologic, clinical, and biomolecular studies. The epilepsy section of the PERNO study included all the patients who experienced seizures, either as first symptom of the tumor or appearing during the course of the disease. Each patient was interviewed by the referring neurologist with a specific interest in epilepsy. The patients who entered the study were followed up with visits on a quarterly basis. KEY FINDINGS: We collected 100 cases with full clinical, neuroradiologic, and pathologic data. The majority (79%) had high grade PBTs (glioblastoma in 50 cases), whereas the remaining patients had low-grade gliomas, mostly localized in the frontal (60%), temporal (38%), and parietal (28%) lobes. Seizures were the first symptom of the tumor in 72 cases. Overall, the initial seizures were tonic-clonic (48%) (without clear initial focal signs in more than half of the patients), focal motor (26%), complex partial (10%), and somatosensitive (8%). The majority of cases (60%) had isolated seizures or a low seizure frequency at the onset of the disease, whereas a high seizure frequency or status epilepticus was observed in 18% and 12% of cases, respectively. Ninety-two patients underwent surgical removal of the tumor, which was either radical (38%) or partial (53%). Seven patients underwent only cerebral biopsy. In the 72 patients in whom seizures were the first symptom, the mean time to the surgical treatment was 174 days, with a significant difference between high grade (95 days) and low grade (481 days) gliomas. At the time of our first observation, the majority of patients (69%) had already undergone surgical removal, with a mean follow-up of 3 months after the procedure. Overall, 39 patients (56%) were seizure free after tumor removal. The good outcome did not depend on presurgical seizure frequency or tumor type, although there was a trend for better results with low-grade PBTs. SIGNIFICANCE: These data provide evidence that seizures are strictly linked to the tumoral lesion: They are the initial symptom of the tumor, reflect the tumor location and type, are usually resistant to antiepileptic treatment, and may disappear after the treatment of the lesion.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/epidemiologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Sistema de Registros , Adulto , Neoplasias Encefálicas/terapia , Epilepsia/terapia , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
Epilepsia ; 54(7): 1288-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23621105

RESUMO

PURPOSE: In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. METHODS: In a collaborative study of the Commission of Genetics of the Italian League Against Epilepsy (LICE) encompassing a 10-year period (2000-2010), we collected 33 ADLTE families, selected on the basis of the following criteria: presence of at least two members concordant for unprovoked partial seizures with prominent auditory and or aphasic symptoms, absence of any known structural brain pathology or etiology, and normal neurologic examination. The clinical, neurophysiologic, and neuroradiologic findings of all patients were analyzed and a genealogic tree was built for each pedigree. The probands' DNA was tested for LGI1 mutations by direct sequencing and, if negative, were genotyped with single-nucleotide polymorphism (SNP) array to search for disease-linked copy-number variation CNV. The disease penetrance in mutated and nonmutated families was assessed as a proportion of obligate carriers who were affected. KEY FINDINGS: The 33 families included a total of 127 affected individuals (61 male, 66 female, 22 deceased). The age at onset ranged between 2 and 60 years (mean 18.7 years). Ninety-one patients (72%) had clear-cut focal (elementary, complex, or secondarily generalized) seizures, characterized by prominent auditory auras in 68% of the cases. Other symptoms included complex visual hallucinations, vertigo, and déjà vu. Aphasic seizures, associated or not with auditory features, were observed in 20% of the cases, whereas tonic-clonic seizures occurred in 86% of the overall series. Sudden noises could precipitate the seizures in about 20% of cases. Seizures, which usually occurred at a low frequency, were promptly controlled or markedly improved by antiepileptic treatment in the majority of patients. The interictal electroencephalography (EEG) studies showed the epileptiform temporal abnormalities in 62% of cases, with a slight predominance over the left region. Magnetic resonance imaging (MRI) or computerized tomography (CT) scans were negative. LGI1 mutations (missense in nine and a microdeletion in one) were found in only 10 families (30%). The patients belonging to the mutated and not mutated groups did not differ except for penetrance estimate, which was 61.3% and 35% in the two groups, respectively (chi-square, p = 0.017). In addition, the disease risk of members of families with mutations in LGI1 was three times higher than that of members of LGI1-negative families (odds ratio [OR] 2.94, confidence interval [CI] 1.2-7.21). SIGNIFICANCE: A large number of ADLTE families has been collected over a 10-year period in Italy, showing a typical and homogeneous phenotype. LGI1 mutations have been found in only one third of families, clinically indistinguishable from nonmutated pedigrees. The estimate of penetrance and OR, however, demonstrates a significantly lower penetrance rate and relative disease risk in non-LGI1-mutated families compared with LGI1-mutated pedigrees, suggesting that a complex inheritance pattern may underlie a proportion of these families.


Assuntos
Epilepsia do Lobo Temporal/genética , Saúde da Família , Genes Dominantes/genética , Mutação/genética , Penetrância , Proteínas/genética , Estimulação Acústica , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Análise Mutacional de DNA , Eletroencefalografia , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Itália , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Adulto Jovem
9.
Hum Mutat ; 30(4): 530-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19191227

RESUMO

Autosomal dominant lateral temporal epilepsy (ADLTE) or autosomal dominant partial epilepsy with auditory features (ADPEAF) is an inherited epileptic syndrome with onset in childhood/adolescence and benign evolution. The hallmark of the syndrome consists of typical auditory auras or ictal aphasia in most affected family members. ADTLE/ADPEAF is associated in about half of the families with mutations of the leucine-rich, glioma-inactivated 1 (LGI1) gene. In addition, de novo LGI1 mutations are found in about 2% of sporadic cases with idiopathic partial epilepsy with auditory features, who are clinically similar to the majority of patients with ADLTE/ADPEAF but have no family history. Twenty-five LGI1 mutations have been described in familial and sporadic lateral temporal epilepsy patients. The mutations are distributed throughout the gene and are mostly missense mutations occurring in both the N-terminal leucine rich repeat (LRR) and C-terminal EPTP (beta propeller) protein domains. We show a tridimensional model of the LRR protein region that allows missense mutations of this region to be divided into two distinct groups: structural and functional mutations. Frameshift, nonsense and splice site point mutations have also been reported that result in protein truncation or internal deletion. The various types of mutations are associated with a rather homogeneous phenotype, and no obvious genotype-phenotype correlation can be identified. Both truncating and missense mutations appear to prevent secretion of mutant proteins, suggesting a loss of function effect of mutations. The function of LGI1 is unclear. Several molecular mechanisms possibly leading to lateral temporal epilepsy are illustrated and briefly discussed.


Assuntos
Epilepsia do Lobo Temporal/genética , Mutação , Proteínas/genética , Sequência de Aminoácidos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/fisiopatologia , Genes Dominantes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Polimorfismo Genético , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA