Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Cancer ; 154(3): 561-572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675956

RESUMO

Metastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor. In the present study, exploring mechanisms regulating melanoma brain metastasis, we discovered that brain-derived factors restrain proliferation and induce apoptosis and necrosis of brain-metastasizing melanoma cells. Employing various purification procedures, we identified a heterodimer composed of hemoglobin alpha and beta chains that perform these antimetastatic functions. Neither the alpha nor the beta subunit alone was inhibitory. An alpha/beta chain dimer chemically purified from human hemoglobin inhibited the cell viability of primary melanomas, melanoma brain metastasis (MBM), and breast cancer cell lines. The dimer-induced DNA damage, cell cycle arrest at the SubG1 phase, apoptosis, and significant necrosis in four MBM cell lines. Proteomic analysis of dimer-treated MBM cells revealed that the dimer downregulates the expression of BRD4, GAB2, and IRS2 proteins, playing crucial roles in cancer cell sustainability and progression. Thus, we hypothesize that the hemoglobin dimer functions as a resistance factor against brain-metastasizing cancer cells.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Melanoma , Humanos , Melanoma/genética , Proteínas Nucleares , Proteômica , Fatores de Transcrição , Neoplasias Encefálicas/genética , Hemoglobinas , Antineoplásicos/farmacologia , Necrose , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular
2.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894348

RESUMO

Reciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA). To test microglial JunB functions, we generated microglia variants stably overexpressing JunB (JunBhi) or with downregulated levels of JunB (JunBlo). Melanoma-derived factors, namely leukemia inhibitory factor (LIF), controlled JunB upregulation through Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling. The expression levels of JunB in melanoma-associated microglia were heterogeneous. Flow cytometry analysis revealed the existence of basal-level JunB-expressing microglia alongside microglia highly expressing JunB. Proteomic profiling revealed a differential protein expression in JunBhi and JunBlo cells, namely the expression of microglia activation markers Iba-1 and CD150, and the immunosuppressive molecules SOCS3 and PD-L1. Functionally, JunBhi microglia displayed decreased migratory capacity and phagocytic activity. JunBlo microglia reduced melanoma proliferation and migration, while JunBhi microglia preserved the ability of melanoma cells to proliferate in three-dimensional co-cultures, that was abrogated by targeting leukemia inhibitory factor receptor (LIFR) in control microglia-melanoma spheroids. Altogether, these data highlight a melanoma-mediated heterogenous effect on microglial JunB expression, dictating the nature of their functional involvement in MBM progression. Targeting microglia highly expressing JunB may potentially be utilized for MBM theranostics.

3.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296634

RESUMO

Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Microglia/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Melanoma/patologia , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190183

RESUMO

Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.

5.
Plant Physiol ; 192(1): 565-581, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511947

RESUMO

Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Flagelina/metabolismo , Doenças das Plantas/microbiologia , Peptídeos/metabolismo , Transdução de Sinais/fisiologia , Pseudomonas syringae/fisiologia , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232513

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Acetato de Desoxicorticosterona , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/terapia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos
7.
Oncogene ; 41(10): 1468-1481, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064215

RESUMO

Metastases are often the direct cause of death from pancreatic ductal adenocarcinoma (PDAC). The role of genomic alterations (GA) in mediating tropism and metastasis formation by PDAC cells is currently unknown. We aimed to identify GAs predisposing colonization of PDAC cells to the liver and decipher mechanisms enabling this process. In order to reveal specific genes, we studied the frequency of GA in 8,880 local and 7,983 metastatic PDAC samples. We observed differential pattern of GA in the local tumor and specific metastatic sites, with liver metastases characterized by deletion of CDKN2A/B (encoding p16/p15, respectively). The role of CDKN2A/B in promoting liver metastasis was evidenced by enhanced tumorigenic phenotype of p15/p16-deleted PDAC cells when exposed to hepatocytes conditioned media. The liver is characterized by high-ammonia low-glutamine environment and transcriptomic assays indicated unique adaptation of PDAC cells to these conditions, including regulation of genes leading to reduced glutaminolysis, like overexpression of GLUL and reduction in GLS2. Furthermore, metabolic assays indicated an increase in glutamate derived from [U-13C]-glucose in p15/p16-deleted cells. Importantly, these cells thrived under high ammonia condition. These data suggest a unique role for genomic alterations in mediating tropism of PDAC. Among these alterations, p15/16 deletion was identified as a promoter of liver metastases. Further studies indicated a unique role for p15/16 in regulating glutaminolysis. These findings reveal vulnerabilities in PDAC cells, which may pave the way for the development of novel therapeutic strategies aiming at the prevention of liver metastases formation.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Amônia/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Inibidor de Quinase Dependente de Ciclina p15 , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tropismo , Neoplasias Pancreáticas
8.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769292

RESUMO

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis is a central player in normal growth and metabolism as well as in a number of pathologies, including cancer. The GH-IGF1 hormonal system, in addition, has emerged as a major determinant of lifespan and healthspan. Laron syndrome (LS), the best characterized entity under the spectrum of the congenital IGF1 deficiencies, results from mutation of the GH receptor (GHR) gene, leading to dwarfism, obesity and other defects. Consistent with the key role of IGF1 in cellular proliferation, epidemiological studies have shown that LS patients are protected from cancer development. While reduced expression of components of the GH-IGF1 axis is associated with enhanced longevity in animal models, it is still unknown whether LS is associated with an increased lifespan. MicroRNAs (miRs) are endogenous short non-coding RNAs that regulate the expression of complementary mRNAs. While a number of miRs involved in the regulation of IGF components have been identified, no previous studies have investigated the differential expression of miRs in congenital IGF1 deficiencies. The present study was aimed at identifying miRs that are differentially expressed in LS and that might account for the phenotypic features of LS patients, including longevity. Our genomic analyses provide evidence that miR-132-3p was highly expressed in LS. In addition, we identified SIRT1, a member of the sirtuin family of histone deacetylases, as a target for negative regulation by miR-132-3p. The data was consistent with the notion that low concentrations of IGF1 in LS lead to elevated miR-132-3p levels, with ensuing reduction in SIRT1 gene expression. The impact of the IGF1-miR-132-3p-SIRT1 loop on aging merits further investigation.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Síndrome de Laron/genética , MicroRNAs/genética , Sirtuína 1/genética , Regulação para Cima , Regiões 3' não Traduzidas , Adulto , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Longevidade , Pessoa de Meia-Idade
9.
Sci Rep ; 11(1): 16246, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376711

RESUMO

The Royal Irises (section Oncocyclus) are a Middle-Eastern group of irises, characterized by extremely large flowers with a huge range of flower colors and a unique pollination system. The Royal Irises are considered to be in the course of speciation and serve as a model for evolutionary processes of speciation and pollination ecology. However, no transcriptomic and genomic data are available for these plants. Transcriptome sequencing is a valuable resource for determining the genetic basis of ecological-meaningful traits, especially in non-model organisms. Here we describe the de novo transcriptome assembly of Iris atropurpurea, an endangered species endemic to Israel's coastal plain. We sequenced and analyzed the transcriptomes of roots, leaves, and three stages of developing flower buds. To identify genes involved in developmental processes we generated phylogenetic gene trees for two major gene families, the MADS-box and MYB transcription factors, which play an important role in plant development. In addition, we identified 1503 short sequence repeats that can be developed for molecular markers for population genetics in irises. This first reported transcriptome for the Royal Irises, and the data generated, provide a valuable resource for this non-model plant that will facilitate gene discovery, functional genomic studies, and development of molecular markers in irises, to complete the intensive eco-evolutionary studies of this group.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes myb , Gênero Iris/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Gênero Iris/crescimento & desenvolvimento , Gênero Iris/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
10.
Cells ; 10(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072893

RESUMO

Chronic inflammation promotes cancer progression by affecting the tumor cells and their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α (TNFα) + interleukin 1ß (IL-1ß) changed the expression of hundreds of genes, skewing the cells towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1ß stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area. The continuous TNFα + IL-1ß stimulation has promoted in a glycolysis-dependent manner the activation of p65 (NF-kB), and the transcription and protein expression of the prometastatic and proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were stimulated continuously by TNFα + IL-1ß in the presence of a glycolysis inhibitor, their conditioned media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical implications in treatment of TNBC patients.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Citocinas/genética , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Transl Res ; 236: 117-132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33887527

RESUMO

Aberrant mesenchymal stem cells (MSCs) in multiple myeloma (MM) bone marrows (BM) promote disease progression and drug resistance. Here, we assayed the protein cargo transported from MM-MSCs to MM cells via microvesicles (MVs) with focus on ribosomal proteins (RPs) and assessment of their influence on translation initiation and design of MM phenotype. Proteomics analysis (mass spectrometry) demonstrated increased levels and repertoire of RPs in MM-MSCs MVs compared to normal donors (ND) counterparts (n = 3-8; P = 9.96E - 08). We limited the RPs load in MM-MSCs MVs (starvation, RSK and XPO1 inhibitions), reapplied the modified MVs to MM cell lines (U266, MM1S), and demonstrated that the RPs are essential to the proliferative effect of MM-MSCs MVs on MM cells (n = 3; P < 0.05). We also observed that inhibition with KPT-185 (XPO1 inhibitor) displayed the most extensive effect on RPs delivery into the MVs (↓80%; P = 3.12E - 05). Using flow cytometry we assessed the expression of select RPs (n = 10) in BM-MSCs cell populations (ND and MM; n ≥ 6 each). This demonstrated a heterogeneous expression of RPs in MM-MSCs with distinct subgroups, a phenomenon absent from ND-MSCs samples. These findings bring to light a new mechanism in which the tumor microenvironment participates in cancer promotion. MVs-mediated horizontal transfer of RPs between niche MSCs and myeloma cells is a systemic way to bestow pro-cancer advantages. This capacity also differentiates normal MSCs from the MM-modified MSCs and may mark their reprogramming. Future studies will be aimed at assessing the clinical and therapeutic potential of the increased RPs levels in MM-MSCs MVs.


Assuntos
Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Ribossômicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Iniciação Traducional da Cadeia Peptídica
12.
Mol Oncol ; 15(5): 1376-1390, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33274599

RESUMO

Previous studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain-metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants. In the first variant, ALDOC overexpression promoted cell viability, adhesion to and transmigration through a layer of brain endothelial cells, and amplified brain micrometastasis formation. The cross-talk between this MBM variant and microglia cells promoted the proliferation and migration of the latter cells. In sharp contrast, ALDOC overexpression in the second brain-metastasizing melanoma variant reduced or did not affect the same malignancy features. In the third melanoma variant, ALDOC overexpression augmented certain characteristics of malignancy and reduced others. The analysis of biological functions and disease pathways in the ALDOC overexpressing variants clearly indicated that ALDOC induced the expression of tumor progression promoting genes in the first variant and antitumor progression properties in the second variant. Overall, these results accentuate the complex microenvironment interactions between microglia cells and MBM, and the functional impact of intertumor heterogeneity. Since intertumor heterogeneity imposes a challenge in the planning of cancer treatment, we propose to employ the functional response of tumors with an identical histology, to a particular drug or the molecular signature of this response, as a predictive indicator of response/nonresponse to this drug.


Assuntos
Neoplasias Encefálicas/secundário , Frutose-Bifosfato Aldolase/fisiologia , Melanoma/patologia , Microambiente Tumoral/fisiologia , Animais , Variação Biológica da População/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Frutose-Bifosfato Aldolase/genética , Células HEK293 , Humanos , Masculino , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genética
13.
J Cell Mol Med ; 24(21): 12864-12868, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949179

RESUMO

The SARS-coronavirus 2 is the aetiologic agent COVID-19. ACE2 has been identified as a cell entry receptor for the virus. Therefore, trying to understand how the gene is controlled has become a major goal. We silenced the expression of STAT3α and STAT3ß, and found that while silencing STAT3α causes an increase in ACE2 expression, silencing STAT3ß causes the opposite effect. Studying the role of STAT3 in ACE2 expression will shed light on the molecular events that contribute to the progression of the disease and that the different roles of STAT3α and STAT3ß in that context must be taken in consideration. Our results place STAT3 in line with additional potential therapeutic targets for treating COVID-19 patients.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19 , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , SARS-CoV-2/efeitos dos fármacos , Fator de Transcrição STAT3/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-32733384

RESUMO

Insulin and insulin-like growth factor-1 (IGF1), acting respectively via the insulin (INSR) and IGF1 (IGF1R) receptors, play key developmental and metabolic roles throughout life. In addition, both signaling pathways fulfill important roles in cancer initiation and progression. The present study was aimed at identifying mechanistic differences between INSR and IGF1R using a recently developed bioinformatics tool, the Biological Network Simulator (BioNSi). This application allows to import and merge multiple pathways and interaction information from the KEGG database into a single network representation. The BioNsi network simulation tool allowed us to exploit the availability of gene expression data derived from breast cancer cell lines with specific disruptions of the INSR or IGF1R genes in order to investigate potential differences in protein expression that might be linked to biological attributes of the specific receptor networks. Modeling-generated information was corroborated by experimental and biological assays. BioNSi analyses revealed that the expression of 75 and 71 genes changed during simulation of IGF1R-KD and INSR-KD, compared to control cells, respectively. Out of 16 proteins that BioNSi analysis was based on, validated by Western blotting, nine were shown to be involved in DNA repair, eight in cell cycle checkpoints, six in proliferation, eight in apoptosis, seven in oxidative stress, six in cell migration, two in energy homeostasis, and three in senescence. Taken together, analyses identified a number of commonalities and, most importantly, dissimilarities between the IGF1R and INSR pathways that might help explain the basis for the biological differences between these networks.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Antígenos CD/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Análise de Sistemas , Células Tumorais Cultivadas
15.
Cells ; 9(7)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668704

RESUMO

Granulocyte-monocyte colony stimulating factor (GM-CSF) is used as an adjuvant in various clinical and preclinical studies with contradictory results. These were attributed to opposing effects of GM-CSF on the immune or myeloid systems of the treated patients or to lack of optimal dosing regimens. The results of the present study point to inter-tumor heterogeneity as a possible mechanism accounting for the contrasting responses to GM-CSF incorporating therapies. Employing xenograft models of human melanomas in nude mice developed in our lab, we detected differential functional responses of melanomas from different patients to GM-CSF both in vitro as well as in vivo. Whereas cells of one melanoma acquired pro metastatic features following exposure to GM-CSF, cells from another melanoma either did not respond or became less malignant. We propose that inter-melanoma heterogeneity as manifested by differential responses of melanoma cells (and perhaps also of other tumor) to GM-CSF may be developed into a predictive marker providing a tool to segregate melanoma patients who will benefit from GM-CSF therapy from those who will not.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Microambiente Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Interleucina-1alfa/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Solubilidade , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
BMC Cancer ; 20(1): 531, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513126

RESUMO

BACKGROUND: Estrogen receptor α (ESR1) plays a critical role in promoting growth of various cancers. Yet, its role in the development of pancreatic cancer is not well-defined. A less studied region of ESR1 is the hinge region, connecting the ligand binding and DNA domains. rs142712646 is a rare SNP in ESR1, which leads to a substitution of arginine to cysteine at amino acid 269 (R269C). The mutation is positioned in the hinge region of ESR1, hence may affect the receptor structure and function. We aimed to characterize the activity of R269C-ESR1 and study its role in the development of pancreatic cancer. METHODS: Transcriptional activity was evaluated by E2-response element (ERE) and AP1 -luciferase reporter assays and qRT-PCR. Proliferation and migration were assessed using MTT and wound healing assays. Gene-expression analysis was performed using RNAseq. RESULTS: We examined the presence of this SNP in various malignancies, using the entire database of FoundationOne and noted enrichment of it in a subset of pancreatic non-ductal adenocarcinoma (n = 2800) compared to pancreatic ductal adenocarcinoma (PDAC) as well as other tumor types (0.53% vs 0.29%, p = 0.02). Studies in breast and pancreatic cancer cells indicated cell type-dependent activity of ESR1 harboring R269C. Thus, expression of R269C-ESR1 enhanced proliferation and migration of PANC-1 and COLO-357 pancreatic cancer cells but not of MCF-7 breast cancer cells. Moreover, R269C-ESR1 enhanced E2-response elements (ERE) and AP1-dependent transcriptional activity and increased mRNA levels of ERE and AP1-regulated genes in pancreatic cancer cell lines, but had a modest effect on MCF-7 breast cancer cells. Accordingly, whole transcriptome analysis indicated alterations of genes associated with tumorigenicity in pancreatic cancer cells and upregulation of genes associated with cell metabolism and hormone biosynthesis in breast cancer cells. CONCLUSIONS: Our study shed new light on the role of the hinge region in regulating transcriptional activity of the ER and indicates cell-type specific activity, namely increased activity in pancreatic cancer cells but reduced activity in breast cancer cells. While rare, the presence of rs142712646 may serve as a novel genetic risk factor, and a possible target for therapy in a subset of non-ductal pancreatic cancers.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único , Domínios Proteicos/genética , RNA-Seq , Elementos de Resposta/genética , Fatores de Risco , Transcrição Gênica
17.
Oncotarget ; 11(17): 1515-1530, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391121

RESUMO

Clinical, epidemiological and experimental data identified the insulin-like growth factor-1 receptor (IGF1R) as a candidate therapeutic target in oncology. While this paradigm is based on well-established biological facts, including the potent anti-apoptotic and cell survival capabilities of the receptor, most Phase III clinical trials designed to target the IGF1R led to disappointing results. The present study was aimed at evaluating the hypothesis that combined treatment composed of selective IGF1R inhibitor along with classical chemotherapy might be more effective than individual monotherapies in breast cancer treatment. Analyses included comprehensive measurements of the synergism achieved by various combination regimens using the CompuSyn software. In addition, proteomic analyses were conducted to identify the proteins involved in the synergistic killing effect at a global level. Data presented here demonstrates that co-treatment of IGF1R inhibitor along with chemotherapeutic drugs markedly improves the therapeutic efficiency in breast cancer cells. Of clinical relevance, our analyses indicate that high IGF1R baseline expression may serve as a predictive biomarker for IGF1R targeted therapy. In addition, we identified a ten-genes signature with potential predictive value. In conclusion, the use of a series of bioinformatics tools shed light on some of the biological pathways that might be responsible for synergysm in cancer therapy.

18.
Exp Hematol ; 85: 8-12, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32283132

RESUMO

Approximately 10% of the human transcriptome is composed of circular RNAs (circRNAs). These are non-coding RNA molecules in which a covalent bond between the 3' and 5' forms a stable circular loop. Herein, we profiled the expression of 13,368 cricRNAS in 21 patients with chronic lymphocytic leukemia (CLL). Regardless of clinical, genetic, or prognostic characteristics, CLL cells share a unique expression profile distinguishable from that of normal B cells. Specifically, 859 circRNAs from 592 genes were differentially expressed (fold change ≥2 and false discovery rate ≤0.05). Whether dysregulation of circRNAs contributes to the pathogenesis of CLL remains to be determined.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , RNA Circular/biossíntese , RNA Viral/biossíntese , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , RNA Circular/genética , RNA Viral/genética
19.
Front Oncol ; 10: 328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232006

RESUMO

Solid pseudopapillary neoplasm (SPN) of pancreas is a rare pancreatic neoplasm with a low metastatic potential. Up to 10% of patients with localized disease at presentation will develop systemic metastases, usually in the peritoneum or the liver. Due to the rarity of SPNs and the overall excellent prognosis, reliable prognostic factors to predict malignant biological behavior remain undetermined. Therefore, we aimed to define clinical, histological, and microRNA patterns that are associated with metastatic disease. We conducted a retrospective single center study on all patients operated for SPN of pancreas between 1995 and 2018. Clinical and pathological data were collected, and expression patterns of 2,578 human microRNAs were analyzed using microRNA array (Affimetrix 4.1) in normal pancreases (NPs), localized tumors (LTs), and metastatic tumors (MTs). The diagnosis of SPN was confirmed in 35 patients who included 28 females and 3 males, with a mean age of 33.8 ± 13.9 years. The only clinical factor associated with metastases was tumor size (mean tumor size 5.20 ± 3.78 in LT vs. 8.13± 1.03 in MT, p < 0.012). Microscopic features of malignancy were not associated with metastases, nor were immunohistochemical stains, including the proliferative index KI67. Higher expressions of miR-184, miR-10a, and miR-887, and lower expressions of miR-375, miR-217, and miR-200c were observed in metastatic tissues on microarray, and validated by real-time polymerase chain reaction. Hierarchal clustering demonstrated that the microRNA expression pattern of MTs was significantly different from that of LTs. The only clinical factor associated with metastases of SPN of pancreas was tumor size. Histological features and immunohistological staining were not predictive of metastases. A panel of six microRNAs was differentially expressed in MTs, and these findings could potentially be used to predict tumor behavior. Validation of these results is needed in larger series.

20.
Carcinogenesis ; 41(1): 100-110, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31586190

RESUMO

Multiple myeloma (MM) cells accumulate in the bone marrow (BM) where their interactions impede disease therapy. We have shown that microvesicles (MVs) derived from BM mesenchymal stem cells (MSCs) of MM patients promote the malignant traits via modulation of translation initiation (TI), whereas MVs from normal donors (ND) do not. Here, we observed that this phenomenon is contingent on a MVs' protein constituent, and determined correlations between the MVs from the tumor microenvironment, for example, MM BM-MSCs and patients' clinical characteristics. BM-MSCs' MVs (ND/MM) proteomes were assayed (mass spectrometry) and compared. Elevated integrin CD49d (X80) and CD29 (X2) was determined in MM-MSCs' MVs and correlated with patients' staging and treatment response (free light chain, BM plasma cells count, stage, response to treatment). BM-MSCs' MVs uptake into MM cell lines was assayed (flow cytometry) with/without integrin inhibitors (RGD, natalizumab, and anti-CD29 monoclonal antibody) and recipient cells were analyzed for cell count, migration, MAPKs, TI, and drug response (doxorubicin, Velcade). Their inhibition, particularly together, attenuated the uptake of MM-MSCs MVs (but not ND-MSCs MVs) into MM cells and reduced MM cells' signaling, phenotype, and increased drug response. This study exposed a critical novel role for CD49d/CD29 on MM-MSCs MVs and presented a discriminate method to inhibit cancer promoting action of MM-MSCs MVs while retaining the anticancer function of ND-MSCs-MVs. Moreover, these findings demonstrate yet again the intricacy of the microenvironment involvement in the malignant process and highlight new therapeutic avenues to be explored.


Assuntos
Carcinogênese/patologia , Micropartículas Derivadas de Células/patologia , Integrina alfa4beta1/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/patologia , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/patologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Micropartículas Derivadas de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Integrina alfa4beta1/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Estadiamento de Neoplasias , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Cultura Primária de Células , Proteômica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA