Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Oral Pathol Med ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327597

RESUMO

BACKGROUND: Oral lichen planus (OLP) and oral lichenoid lesions (OLL) are inflammatory T-cell mediated disorders of the oral mucosa (OM). Both are associated with an increased risk of oral squamous cell carcinoma, with OLL possibly having a higher rate of malignant transformation than OLP. Programmed death ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase (IDO) are immunosuppressive molecules possessing inhibitory effect on T-cells and have been implicated in carcinogenesis. The aim of this study was to examine the expression of PD-L1 and IDO in OLP and OLL. METHODS: Sixty-eight formalin-fixed, paraffin-embedded tissue samples diagnosed as OLP, compatible with OLP, or OLL were divided into OLP (n = 39) or OLL (n = 29) groups based on both clinical and histopathological diagnostic criteria. Samples of healthy OM (n = 9) served as controls. Samples were immunohistochemically stained for PD-L1 and IDO, and staining distribution and intensity were evaluated. RESULTS: Immunohistochemical expression of PD-L1 was increased in the basal and intermediate layers of epithelium in OLP and in lamina propria in both OLP and OLL compared to controls. OLP and OLL showed increased expression of IDO in epithelium and lamina propria compared to controls. PD-L1 staining intensity in the basal epithelial layer, and IDO staining intensity in lamina propria were increased in OLP compared to OLL. CONCLUSION: The results indicate that the expression of PD-L1 and IDO increases in OLP and OLL, suggesting that these molecules may play a role in the pathogenesis of both disorders.

2.
Oncoimmunology ; 13(1): 2393442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175947

RESUMO

The inflammatory tumor microenvironment (TME) is a key driver for tumor-promoting processes. Tumor-associated macrophages are one of the main immune cell types in the TME and their increased density is related to poor prognosis in prostate cancer. Here, we investigated the influence of pro-inflammatory (M1) and immunosuppressive (M2) macrophages on prostate cancer lineage plasticity. Our findings reveal that M1 macrophage secreted factors upregulate genes related to stemness while downregulating genes associated with androgen response in prostate cancer cells. The expression of cancer stem cell (CSC) plasticity markers NANOG, KLF4, SOX2, OCT4, and CD44 was stimulated by the secreted factors from M1 macrophages. Moreover, AR and its target gene PSA were observed to be suppressed in LNCaP cells treated with secreted factors from M1 macrophages. Inhibition of NFκB signaling using the IKK16 inhibitor resulted in downregulation of NANOG, SOX2, and CD44 and CSC plasticity. Our study highlights that the secreted factors from M1 macrophages drive prostate cancer cell plasticity by upregulating the expression of CSC plasticity markers through NFκB signaling pathway.


Assuntos
Receptores de Hialuronatos , Fator 4 Semelhante a Kruppel , Macrófagos , NF-kappa B , Proteína Homeobox Nanog , Células-Tronco Neoplásicas , Neoplasias da Próstata , Fatores de Transcrição SOXB1 , Transdução de Sinais , Masculino , Humanos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 4 Semelhante a Kruppel/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Regulação para Cima , Microambiente Tumoral/imunologia , Plasticidade Celular/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Animais , Camundongos
3.
Sci Rep ; 14(1): 10626, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724670

RESUMO

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Assuntos
Carcinoma de Células Renais , Matriz Extracelular , Regulação Neoplásica da Expressão Gênica , Ácido Hialurônico , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Ácido Hialurônico/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Prognóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transcriptoma , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
4.
Redox Biol ; 69: 103031, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184997

RESUMO

The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenocarcinoma de Pulmão/genética , Apoptose/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Mutação
5.
BMC Cancer ; 23(1): 1186, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049762

RESUMO

BACKGROUND: Less than half of unselected metastatic cancer patients benefit from the immune checkpoint inhibitor (ICI) therapy. Systemic cancer-related inflammation may influence the efficacy of ICIs and thus, systemic inflammatory markers could have prognostic and/or predictive potential in ICI therapy. Here, we aimed to identify a combination of inflammation-related laboratory parameters to establish a practical prognostic risk model for the pretreatment evaluation of a response and survival of ICI-treated patients with different types of metastatic cancers. METHODS: The study-cohort consisted of a real-world patient population receiving ICIs for metastatic cancers of different origins (n = 158). Laboratory parameters determined before the initiation of the ICI treatment were retrospectively collected. Six inflammation-related parameters i.e., elevated values of neutrophils, platelets, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and lactate dehydrogenase (LDH), and the presence of anemia, were each scored with one point, giving 0-6 risk points for each patient. The patients with information of all these six parameters (n = 109) were then stratified into low-risk (0-3 points) and high-risk (4-6 points) groups. The overall response rate (ORR), overall survival (OS), and progression-free survival (PFS) according to the risk scores were determined. RESULTS: The risk model was strongly associated with the outcome of the patients. The ORR to ICI treatment in the high-risk group was 30.3% in comparison to 53.9% in the low-risk group (p = 0.023). The medians for OS were 10.0 months and 27.3 months, respectively (p < 0.001), and the corresponding medians for PFS were 3.9 months and 6.3 months (p = 0.002). The risk group remained as a significant prognostic factor for both OS (HR 3.04, 95% CI 1.64-5.64, p < 0.001) and PFS (HR 1.79, 95% CI 1.04-3.06, p = 0.035) in the Cox multivariate analyses. CONCLUSIONS: We propose a readily feasible, practical risk model consisted of six inflammation-related laboratory parameters as a tool for outcome prediction in metastatic cancer patients treated with ICIs. The risk model was strongly associated with the outcome of the patients in terms of all the evaluated indicators i.e., ORR, OS and PFS. Yet, further studies are needed to validate the risk model.


Assuntos
Segunda Neoplasia Primária , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Prognóstico , Estudos Retrospectivos , Neoplasias/tratamento farmacológico , Inflamação , Fatores de Risco
6.
Biomedicines ; 10(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551965

RESUMO

The immunosuppressive tumor microenvironment (TME) consists of suppressive cells producing a variety of immunomodulatory proteins, such as programmed death ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO). Although granzyme B (GrB) is known to convey the cytolytic activities of CD8+ cytotoxic lymphocytes, it is also expressed by other cells, such as regulatory T and B cells, for immunosuppressive purposes. The role of GrB+ lymphocytes in melanoma has not been examined extensively. In this study, benign, premalignant, and malignant melanocytic tumors were stained immunohistochemically for CD8 and GrB. PD-L1 was also stained from malignant samples that had accompanying clinicopathological data. The association of CD8+ and GrB+ lymphocytes with PD-L1 expression, tumor stage, prognosis, and previously analyzed immunosuppressive factors were evaluated. Our aim was to obtain a more comprehensive perception of the immunosuppressive TME in melanoma. The results show that both CD8+ and GrB+ lymphocytes were more abundant in pT4 compared to pT1 melanomas, and in lymph node metastases compared to primary melanomas. Surprisingly, a low GrB/CD8 ratio was associated with better recurrence-free survival in primary melanomas, which indicates that GrB+ lymphocytes might represent activated immunosuppressive lymphocytes rather than cytotoxic T cells. In the present study, CD8+ lymphocytes associated positively with both tumor and stromal immune cell PD-L1 and IDO expression. In addition, PD-L1+ tumor and stromal immune cells associated positively with IDO+ stromal immune and melanoma cells. The data suggest that IDO and PD-L1 seem to be key immunosuppressive factors in CD8+ lymphocyte-predominant tumors in CM.

7.
Biomedicines ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359337

RESUMO

Purpose: It is well established that cancer cells exploit aberrant synthesis of mucin 1 (MUC1) and hyaluronan (HA) synthesis along with HA's physiological cell surface receptor CD44. However, their role in irradiated oral tissue has not been reported previously. We, therefore, aimed to study MUC1, CD44 and HA immunohistochemically in irradiated oral mucosa and their role in the long-term effects after radiotherapy. Materials and Methods: Oral mucosal biopsies were obtained from healthy subjects as controls and from patients after radiotherapy for head and neck cancer (irradiated group) during dental implant surgery.The presence of MUC1, CD44, and HA in oral mucosa was studied by immunohistochemical methods. The differences in the localization and intensity in the oral epithelium between control and irradiated tissue were analyzed. Results: The staining intensity of MUC1 was confined to the superficial epithelial layer, whereas HA and CD44 were found in the cell membranes in the epithelial basal and intermediate layers of control specimens. In irradiated epithelium, MUC1 staining was distributed throughout all the layers of the oral epithelium, with significant staining in the basal and intermediate layers. Accordingly, HA and CD44 staining extended to involve the superficial cells of the irradiated epithelium. The staining pattern of MUC1 and CD44 showed significant changes in irradiated samples. Conclusions: Our results showed that the staining intensities of MUC1, CD44, and HA were significantly elevated in irradiated tissue compared to controls. MUC1, CD44, and HA are important markers and take part in long-term changes in the oral mucosa after radiotherapy.

8.
J Invest Dermatol ; 142(11): 3041-3051.e10, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35580697

RESUMO

The tumor microenvironment, with distinctive cell types and a complex extracellular matrix has a tremendous impact on cancer progression. In this study, we investigated the effects of proinflammatory (M1) and immunosuppressive (M2) macrophages on hyaluronan (HA) matrix formation and inflammatory response in melanoma cells. Proinflammatory factors secreted from M1 macrophages stimulated the formation of a thick pericellular HA matrix in melanoma cells due to upregulation of HA synthase 2 (HAS2). HAS2 silencing reversed the effect of M1 conditioned medium on pericellular HA coat formation, and interestingly, it also partly downregulated the M1 conditioned medium‒induced upregulation of inflammation-related genes (IL1ß, IL6), as did the inhibitors for TNFR and IKKγ. Gene set enrichment analysis revealed that genes related to inflammatory responses and TNF-α signaling via NF-κB are enriched in the M1 conditioned medium‒treated melanoma cells. Moreover, the expression of matrix metalloproteinase 9 and three-dimensional cell invasion were induced in these cells, whereas M2 macrophages had no effect on HA synthesis, inflammatory response, or invasion. Our results indicate that the activation of TNFR-NF-κB signaling in M1 conditioned medium‒treated cells leads to HAS2 upregulation, which associates with a protumor inflammatory and invasive phenotype of melanoma cells.


Assuntos
Melanoma , NF-kappa B , Humanos , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Hialurônico/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Inflamação/patologia , Melanoma/patologia , Microambiente Tumoral
9.
BMC Cancer ; 21(1): 641, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051744

RESUMO

BACKGROUND: FoxP3+ Regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) participate in the formation of an immunosuppressive tumor microenvironment (TME) in malignant cutaneous melanoma (CM). Recent studies have reported that IDO expression correlates with poor prognosis and greater Breslow's depth, but results concerning the role of FoxP3+ Tregs in CM have been controversial. Furthermore, the correlation between IDO and Tregs has not been substantially studied in CM, although IDO is known to be an important regulator of Tregs activity. METHODS: We investigated the associations of FoxP3+ Tregs, IDO+ tumor cells and IDO+ stromal immune cells with tumor stage, prognostic factors and survival in CM. FoxP3 and IDO were immunohistochemically stained from 29 benign and 29 dysplastic nevi, 18 in situ -melanomas, 48 superficial and 62 deep melanomas and 67 lymph node metastases (LNMs) of CM. The number of FoxP3+ Tregs and IDO+ stromal immune cells, and the coverage and intensity of IDO+ tumor cells were analysed. RESULTS: The number of FoxP3+ Tregs and IDO+ stromal immune cells were significantly higher in malignant melanomas compared with benign lesions. The increased expression of IDO in melanoma cells was associated with poor prognostic factors, such as recurrence, nodular growth pattern and increased mitotic count. Furthermore, the expression of IDO in melanoma cells was associated with reduced recurrence-free survival. We further showed that there was a positive correlation between IDO+ tumor cells and FoxP3+ Tregs. CONCLUSIONS: These results indicate that IDO is strongly involved in melanoma progression. FoxP3+ Tregs also seems to contribute to the immunosuppressive TME in CM, but their significance in melanoma progression remains unclear. The positive association of FoxP3+ Tregs with IDO+ melanoma cells, but not with IDO+ stromal immune cells, indicates a complex interaction between IDO and Tregs in CM, which demands further studies.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Melanoma/imunologia , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Progressão da Doença , Intervalo Livre de Doença , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Melanoma/diagnóstico , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Prognóstico , Estudos Retrospectivos , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Adulto Jovem , Melanoma Maligno Cutâneo
10.
Front Oncol ; 11: 811434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127523

RESUMO

The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.

11.
Urol Oncol ; 38(8): 686.e11-686.e22, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360171

RESUMO

PURPOSE: Hyaluronan, a major glycosaminoglycan of the extracellular matrix, can act as an oncogenic component of the tumor microenvironment in many human malignancies. We characterized the hyaluronan content of renal cell carcinomas (RCCs) and investigated its correlations with clinicopathological parameters and patient survival. PATIENTS AND METHODS: This retrospective study included data from 316 patients that had undergone surgery for RCC in Kuopio University Hospital in 2000 to 2013. The hyaluronan content of surgical tumor samples were histochemically stained with a biotinylated hyaluronan-specific affinity probe. The amount of tumor infiltrating lymphocytes was evaluated in each tumor. Kaplan-Meier and univariate and multivariate Cox-regression analyses were performed to estimate the impact of hyaluronan content on overall survival, disease-specific survival, and metastasis-free survival. RESULTS: Detectable cellular hyaluronan was associated with higher tumor grades and the presence of tumor infiltrating lymphocytes. Cellular hyaluronan identified a prognostically unfavourable subgroup among low-grade carcinomas. Multivariate analyses showed that measurable cellular hyaluronan was an independent negative prognostic factor for overall survival (hazard ratio [HR] 1.4; 95% confidence interval [CI]: 1.02-2.0; P = 0.039), Disease-specific survival (HR 2.07; 95% CI: 1.2-3.3; P = 0.002), and metastasis-free survival (HR 2.45; 95% CI: 1.37-4.4; P = 0.003). CONCLUSIONS: Cellular hyaluronan was significantly associated with unfavourable features and a poor prognosis in RCC. Further studies are needed to investigate the biological mechanism underlying hyaluronan accumulation in RCC.


Assuntos
Carcinoma de Células Renais/química , Carcinoma de Células Renais/mortalidade , Ácido Hialurônico/análise , Ácido Hialurônico/fisiologia , Neoplasias Renais/química , Neoplasias Renais/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Células/química , Correlação de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
12.
Biol Proced Online ; 22: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190011

RESUMO

BACKGROUND: Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. RESULTS: Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. CONCLUSIONS: Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.

13.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820036

RESUMO

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Assuntos
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronan Sintases/genética , Melanoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuronatos/genética , Transdução de Sinais/genética
14.
Oncogene ; 38(50): 7473-7490, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31444413

RESUMO

Accumulating evidence suggests that constitutively active Nrf2 has a pivotal role in cancer as it induces pro-survival genes that promote cancer cell proliferation and chemoresistance. The mechanisms of Nrf2 dysregulation and functions in cancer have not been fully characterized. Here, we jointly analyzed the Broad-Novartis Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Atlas (TCGA) multi-omics data in order to identify cancer types where Nrf2 activation is present. We found that Nrf2 is hyperactivated in a subset of glioblastoma (GBM) patients, whose tumors display a mesenchymal subtype, and uncover several different mechanisms contributing to increased Nrf2 activity. Importantly, we identified a positive feedback loop between SQSTM1/p62 and Nrf2 as a mechanism for activation of the Nrf2 pathway. We also show that autophagy and serine/threonine signaling regulates p62 mediated Keap1 degradation. Our results in glioma cell lines indicate that both Nrf2 and p62 promote proliferation, invasion and mesenchymal transition. Finally, Nrf2 activity was associated with decreased progression free survival in TCGA GBM patient samples, suggesting that treatments have limited efficacy if this transcription factor is overactivated. Overall, our findings place Nrf2 and p62 as the key components of the mesenchymal subtype network, with implications to tumorigenesis and treatment resistance. Thus, Nrf2 activation could be used as a surrogate prognostic marker in mesenchymal subtype GBMs. Furthermore, strategies aiming at either inhibiting Nrf2 or exploiting Nrf2 hyperactivity for targeted gene therapy may provide novel treatment options for this subset of GBM.


Assuntos
Glioblastoma/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Sequestossoma-1/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Estresse Oxidativo/genética , Intervalo Livre de Progressão , Ligação Proteica/genética , Transdução de Sinais
15.
J Oral Pathol Med ; 48(8): 735-744, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228209

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a chronic T-cell-mediated inflammatory disease, which is associated with increased risk of developing oral squamous cell carcinoma. Epithelial-to-mesenchymal transition is a physiological phenomenon occurring during growth and organogenesis, but it has also an important role in tumorigenesis. In the present work, we studied the expression of known epithelial-to-mesenchymal transition markers in oral lichen planus. METHODS: In total, 54 oral lichen planus and 22 control samples were analyzed for epithelial-to-mesenchymal transition markers. Samples were immunohistochemically stained for claudin-1, claudin-4 and claudin-7, cadherin-1 (E-cadherin), Twist-related protein 1 (TWIST1) and zinc finger E-box-binding homeobox 1 (ZEB1). RESULTS: The expression of claudin-1, claudin-4 and E-cadherin was significantly weaker in oral lichen planus epithelium compared to controls (P < 0.001). The quantity of claudin-7-expressing cells (P < 0.001) and claudin-7 staining intensity (P < 0.05) in the stroma was greater in lichen planus than in control samples. TWIST1 and ZEB1 stainings were negative in the epithelium in both lichen planus and controls. The number of TWIST1-expressing cells in the stroma was higher in lichen planus than in controls (P < 0.001). There was a statistically significant difference in ZEB1 staining intensity in the stroma between lichen planus and control samples (P < 0.05). CONCLUSIONS: The data indicate that the expression of claudin-1, claudin-4 and E-cadherin is decreased in oral lichen planus. This may lead to disturbance in epithelial tight junctions, cell-cell connections and epithelial permeability, contributing to oral lichen planus pathogenesis. Based on the present study, the role of TWIST1 and ZEB1 in oral lichen planus remains unclear.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal , Líquen Plano Bucal/genética , Neoplasias Bucais/genética , Antígenos CD/genética , Caderinas/genética , Estudos de Casos e Controles , Claudina-1/metabolismo , Claudina-4/metabolismo , Claudinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
16.
J Invest Dermatol ; 139(9): 1993-2003.e4, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30935974

RESUMO

Skin is constantly exposed to UVR, the most critical risk factor for melanoma development. Hyaluronan is abundant in the epidermal extracellular matrix and may undergo degradation by UVR. It is hypothesized that an intact hyaluronan coat around the cells protects against various agents including UVR, whereas hyaluronan fragments promote inflammation and tumorigenesis. We investigated whether hyaluronan contributes to the UVB-induced inflammatory responses in primary melanocytes. A single dose of UVB suppressed hyaluronan secretion and the expression of hyaluronan synthases HAS2 and HAS3, the hyaluronan receptor CD44, and the hyaluronidase HYAL2, as well as induced the expression of inflammatory mediators IL6, IL8, CXCL1, and CXCL10. Silencing HAS2 and CD44 partly inhibited the inflammatory response, suggesting that hyaluronan coat is involved in the process. UVB alone caused little changes in the coat, but its removal with hyaluronidase during the recovery from UVB exposure dramatically enhanced the surge of these inflammatory mediators via TLR4, p38, and NF-κB. Interestingly, exogenous hyaluronan fragments did not reproduce the inflammatory effects of hyaluronidase. We hypothesize that the hyaluronan coat on melanocytes is a sensor of tissue injury. Combined with UVB exposure, repeated injuries to the hyaluronan coat could maintain a sustained inflammatory state associated with melanomagenesis.


Assuntos
Epiderme/efeitos da radiação , Ácido Hialurônico/efeitos da radiação , Melanócitos/imunologia , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Carcinogênese/imunologia , Carcinogênese/efeitos da radiação , Células Cultivadas , Quimiocina CXCL1/metabolismo , Quimiocina CXCL10/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Melanócitos/metabolismo , Melanócitos/efeitos da radiação , Melanoma/etiologia , Melanoma/patologia , Cultura Primária de Células , Transdução de Sinais/imunologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Receptor 4 Toll-Like/metabolismo
17.
Matrix Biol ; 78-79: 147-164, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29709595

RESUMO

Hyaluronan accumulates in the stroma of several solid tumors and promotes their progression. Both enhanced synthesis and fragmentation of hyaluronan are required as a part of this inflammatory process resembling wound healing. Increased expression of the genes of hyaluronan synthases (HAS1-3) are infrequent in human tumors, while posttranslational modifications that activate the HAS enzymes, and glucose shunted to the UDP-sugar substrates HASs, can have crucial contributions to tumor hyaluronan synthesis. The pericellular hyaluronan influences virtually all cell-cell and cell-matrix interactions, controlling migration, proliferation, apoptosis, epithelial to mesenchymal transition, and stem cell functions. The catabolism by hyaluronidases and free radicals appears to be as important as synthesis for the inflammation that promotes tumor growth, since the receptors mediating the signals create specific responses to hyaluronan fragments. Targeting hyaluronan metabolism shows therapeutic efficiency in animal experiments and early clinical trials.


Assuntos
Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Neoplasias/metabolismo , Animais , Comunicação Celular , Movimento Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
18.
Melanoma Res ; 29(3): 237-247, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30399061

RESUMO

The role of tumor-associated macrophages (TAMs) in cutaneous melanoma is controversial. TAMs include immunogenic and immunosuppressive subtypes, and have distinct functions according to their microanatomical localization. Our aim was to investigate TAMs in benign, premalignant, and malignant melanocytic lesions to determine possible associations with tumor progression and clinicopathological characteristics. In total, 184 tissue samples, including benign and dysplastic nevi, in-situ melanomas, superficial (Breslow's depth <1 mm), and deep (Breslow's depth >4 mm) invasive melanomas and lymph node metastases, were analyzed for macrophage content. Samples were stained immunohistochemically for CD68 and CD163, representing all TAMs and M2-macrophages, respectively. Macrophages were counted by hotspot analysis, and assessed semiquantitatively from the tumor cell nests and stromal component of malignant cases. CD68+ and CD163+ TAMs were more abundant in invasive melanomas compared with benign nevi. The proportion of TAMs in the tumor nests was higher in deep melanomas and lymph node metastases compared with superficially invasive melanomas. High amounts of CD68+ macrophages in tumor cell nests were associated with recurrence, whereas low CD163+ macrophage proportion in tumor stroma was associated with recurrence and in primary melanomas also with poor overall survival. TAMs seem to promote tumor progression in cutaneous melanoma. In particular, CD68+ TAMs and their abundance in tumor nests were associated with poor prognostic factors. However, the correlation of low stromal CD163+ TAM proportion with a poor prognosis indicates that the role of TAMs depends on their subtype and microanatomical localization.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Macrófagos/patologia , Melanoma/patologia , Recidiva Local de Neoplasia/patologia , Receptores de Superfície Celular/metabolismo , Neoplasias Cutâneas/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Macrófagos/metabolismo , Masculino , Melanoma/metabolismo , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Neoplasias Cutâneas/metabolismo , Adulto Jovem , Melanoma Maligno Cutâneo
19.
BMC Cancer ; 18(1): 664, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914429

RESUMO

BACKGROUND: Diffusely infiltrating astrocytomas originate from astrocytic glial cells or their precursor cells and are the most common type of brain tumors in adults. In this retrospective study, we investigated the content of hyaluronan, its cell surface receptor, CD44 and the expression of hyaluronan metabolizing enzymes, in these aggressive tumors. Hyaluronan is the main component of extracellular matrix in the brain. In many tumors, aberrant hyaluronan metabolism implicates aggressive disease progression and metastatic potential. METHODS: Our material consisted of 163 diffusely infiltrating astrocytomas (WHO grades II-IV). Tumor samples were processed into tissue microarray (TMA) blocks. The TMA sections were stained for hyaluronan, CD44, hyaluronan synthases 1-3 (HAS1-3) and hyaluronidase 2 (HYAL2). The immunostaining results were compared with χ2 -test or with Kruskal-Wallis test for correlation with clinicopathological parameters and survival analyses were done with Kaplan-Meier log rank test and Cox regression. RESULTS: Hyaluronan and CD44 were strongly expressed in astrocytic gliomas but their expression did not correlate with WHO grade or any other clinicopathological parameters whereas high HAS2 staining intensity was observed in IDH1 negative tumors (p = 0.003). In addition, in non-parametric tests increased HAS2 staining intensity correlated with increased cell proliferation (p = 0.013) and in log rank test with decreased overall survival of patients (p = 0.001). In the Cox regression analysis HAS2 expression turned out to be a significant independent prognostic factor (p = 0.008). CONCLUSIONS: This study indicates that elevated expression of HAS2 is associated with glioma progression and suggests that HAS2 has a prognostic significance in diffusely infiltrating astrocytomas.


Assuntos
Astrocitoma/enzimologia , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/enzimologia , Hialuronan Sintases/biossíntese , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/biossíntese , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos
20.
Biochem J ; 475(10): 1755-1772, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626161

RESUMO

Extracellular nucleotides are used as signaling molecules by several cell types. In epidermis, their release is triggered by insults such as ultraviolet radiation, barrier disruption, and tissue wounding, and by specific nerve terminals firing. Increased synthesis of hyaluronan, a ubiquitous extracellular matrix glycosaminoglycan, also occurs in response to stress, leading to the attractive hypothesis that nucleotide signaling and hyaluronan synthesis could also be linked. In HaCaT keratinocytes, ATP caused a rapid and strong but transient activation of hyaluronan synthase 2 (HAS2) expression via protein kinase C-, Ca2+/calmodulin-dependent protein kinase II-, mitogen-activated protein kinase-, and calcium response element-binding protein-dependent pathways by activating the purinergic P2Y2 receptor. Smaller but more persistent up-regulation of HAS3 and CD44, and delayed up-regulation of HAS1 were also observed. Accumulation of peri- and extracellular hyaluronan followed 4-6 h after stimulation, an effect further enhanced by the hyaluronan precursor glucosamine. AMP and adenosine, the degradation products of ATP, markedly inhibited HAS2 expression and, despite concomitant up-regulation of HAS1 and HAS3, inhibited hyaluronan synthesis. Functionally, ATP moderately increased cell migration, whereas AMP and adenosine had no effect. Our data highlight the strong influence of adenosinergic signaling on hyaluronan metabolism in human keratinocytes. Epidermal insults are associated with extracellular ATP release, as well as rapid up-regulation of HAS2/3, CD44, and hyaluronan synthesis, and we show here that the two phenomena are linked. Furthermore, as ATP is rapidly degraded, the opposite effects of its less phosphorylated derivatives facilitate a rapid shut-off of the hyaluronan response, providing a feedback mechanism to prevent excessive reactions when more persistent signals are absent.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Epiderme/enzimologia , Hialuronan Sintases/metabolismo , Queratinócitos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Epiderme/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Receptores Purinérgicos P2Y2/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA