Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809694

RESUMO

Pancreatic cancer (PDAC) harbors a complex tumor microenvironment (TME), and crosstalk between cells in the TME can contribute to drug resistance and relapse. Vasoactive intestinal peptide (VIP) is overexpressed in PDAC, and VIP receptors expressed on T cells are a targetable pathway that sensitizes PDAC to immunotherapy. In this study, we showed that pancreatic cancer cells engage in autocrine VIP signaling through VIP receptor 2 (VPAC2). High co-expression of VIP with VPAC2 correlated with reduced relapse-free survival in PDAC patients. VPAC2 activation in PDAC cells upregulated piwi-like RNA-mediated gene silencing 2 (Piwil2), which stimulated cancer cell clonogenic growth. In addition, VPAC2 signaling increased expression of TGF-ß1 to inhibit T cell function. Loss of VPAC2 on PDAC cells led to reduced tumor growth and increased sensitivity to anti-PD1 immunotherapy in mouse models of PDAC. Overall, these findings expand our understanding of the role of VIP/VPAC2 signaling in PDAC and provide the rationale for developing potent VPAC2-specific antagonists for treating PDAC patients.

2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673976

RESUMO

Antagonist peptides (ANTs) of vasoactive intestinal polypeptide receptors (VIP-Rs) are shown to enhance T cell activation and proliferation in vitro, as well as improving T cell-dependent anti-tumor response in acute myeloid leukemia (AML) murine models. However, peptide therapeutics often suffer from poor metabolic stability and exhibit a short half-life/fast elimination in vivo. In this study, we describe efforts to enhance the drug properties of ANTs via chemical modifications. The lead antagonist (ANT308) is derivatized with the following modifications: N-terminus acetylation, peptide stapling, and PEGylation. Acetylated ANT308 exhibits diminished T cell activation in vitro, indicating that N-terminus conservation is critical for antagonist activity. The replacement of residues 13 and 17 with cysteine to accommodate a chemical staple results in diminished survival using the modified peptide to treat mice with AML. However, the incorporation of the constraint increases survival and reduces tumor burden relative to its unstapled counterpart. Notably, PEGylation has a significant positive effect, with fewer doses of PEGylated ANT308 needed to achieve comparable overall survival and tumor burden in leukemic mice dosed with the parenteral ANT308 peptide, suggesting that polyethylene glycol (PEG) incorporation enhances longevity, and thus the antagonist activity of ANT308.


Assuntos
Leucemia Mieloide Aguda , Receptores de Peptídeo Intestinal Vasoativo , Animais , Camundongos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores de Peptídeo Intestinal Vasoativo/metabolismo , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Humanos , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linhagem Celular Tumoral
3.
Front Immunol ; 14: 1154566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153607

RESUMO

In the past decades, advances in the use of adoptive cellular therapy to treat cancer have led to unprecedented responses in patients with relapsed/refractory or late-stage malignancies. However, cellular exhaustion and senescence limit the efficacy of FDA-approved T-cell therapies in patients with hematologic malignancies and the widespread application of this approach in treating patients with solid tumors. Investigators are addressing the current obstacles by focusing on the manufacturing process of effector T cells, including engineering approaches and ex vivo expansion strategies to regulate T-cell differentiation. Here we reviewed the current small-molecule strategies to enhance T-cell expansion, persistence, and functionality during ex vivo manufacturing. We further discussed the synergistic benefits of the dual-targeting approaches and proposed novel vasoactive intestinal peptide receptor antagonists (VIPR-ANT) peptides as emerging candidates to enhance cell-based immunotherapy.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Linfócitos T , Neoplasias/terapia , Imunoterapia , Diferenciação Celular
4.
Nat Commun ; 13(1): 6418, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302761

RESUMO

A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Peptídeo Intestinal Vasoativo/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Peptídeo Intestinal Vasoativo , Transdução de Sinais , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Blood ; 140(12): 1431-1447, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35443019

RESUMO

Vasoactive intestinal polypeptide (VIP), an anti-inflammatory neuropeptide with pleiotropic cardiovascular effects, induces differentiation of hematopoietic stem cells into regulatory dendritic cells that limit graft-versus-host disease (GVHD) in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We have previously shown that donor plasmacytoid dendritic cells (pDCs) in bone marrow (BM) donor grafts limit the pathogenesis of GVHD. In this current study we show that murine and human pDCs express VIP, and that VIP-expressing pDCs limit T-cell activation and expansion using both in vivo and in vitro model systems. Using T cells or pDCs from transgenic luciferase+ donors in murine bone marrow transplantation (BMT), we show similar homing patterns of donor pDCs and T cells to the major sites for alloactivation of donor T cells: spleen and gut. Cotransplanting VIP-knockout (KO) pDCs with hematopoietic stem cells and T cells in major histocompatibility complex mismatched allogeneic BMT led to lower survival, higher GVHD scores, and more colon crypt cell apoptosis than transplanting wild-type pDCs. BMT recipients of VIP-KO pDCs had more T helper 1 polarized T cells, and higher plasma levels of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-α than recipients of wild-type pDCs. T cells from VIP-KO pDC recipients had increasing levels of bhlhe40 transcripts during the first 2 weeks posttransplant, and higher levels of CyclophilinA/Ppia transcripts at day 15 compared with T cells from recipients of wild-type pDCs. Collectively, these data indicate paracrine VIP synthesis by donor pDCs limits pathogenic T-cell inflammation, supporting a novel mechanism by which donor immune cells regulate T-cell activation and GVHD in allogeneic BMT.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Transplante de Medula Óssea/efeitos adversos , Células Dendríticas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA