Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 123(8): 1655-1670, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36988672

RESUMO

PURPOSE: To compare methods of relative intensity prescription for their ability to normalise performance (i.e., time to exhaustion), physiological, and perceptual responses to high-intensity interval training (HIIT) between individuals. METHODS: Sixteen male and two female cyclists (age: 38 ± 11 years, height: 177 ± 7 cm, body mass: 71.6 ± 7.9 kg, maximal oxygen uptake ([Formula: see text]O2max): 54.3 ± 8.9 ml·kg-1 min-1) initially undertook an incremental test to exhaustion, a 3 min all-out test, and a 20 min time-trial to determine prescription benchmarks. Then, four HIIT sessions (4 min on, 2 min off) were each performed to exhaustion at: the work rate associated with the gas exchange threshold ([Formula: see text]GET) plus 70% of the difference between [Formula: see text]GET and the work rate associated with [Formula: see text]O2max; 85% of the maximal work rate of the incremental test (85%[Formula: see text]max); 120% of the mean work rate of the 20 min time-trial (120%TT); and the work rate predicted to expend, in 4 min, 80% of the work capacity above critical power. Acute HIIT responses were modelled with participant as a random effect to provide estimates of inter-individual variability. RESULTS: For all dependent variables, the magnitude of inter-individual variability was high, and confidence intervals overlapped substantially, indicating that the relative intensity normalisation methods were similarly poor. Inter-individual coefficients of variation for time to exhaustion varied from 44.2% (85%[Formula: see text]max) to 59.1% (120%TT), making it difficult to predict acute HIIT responses for an individual. CONCLUSION: The present study suggests that the methods of intensity prescription investigated do not normalise acute responses to HIIT between individuals.


Assuntos
Treinamento Intervalado de Alta Intensidade , Consumo de Oxigênio , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Teste de Esforço/métodos
2.
Int J Sports Physiol Perform ; 16(12): 1824-1833, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34088883

RESUMO

PURPOSE: Rating of perceived exertion (RPE) as a training-intensity prescription has been extensively used by athletes and coaches. However, individual variability in the physiological response to exercise prescribed using RPE has not been investigated. METHODS: Twenty well-trained competitive cyclists (male = 18, female = 2, maximum oxygen consumption = 55.07 [11.06] mL·kg-1·min-1) completed 3 exercise trials each consisting of 9 randomized self-paced exercise bouts of either 1, 4, or 8 minutes at RPEs of 9, 13, and 17. Within-athlete variability (WAV) and between-athletes variability (BAV) in power and physiological responses were calculated using the coefficient of variation. Total variability was calculated as the ratio of WAV to BAV. RESULTS: Increased RPEs were associated with higher power, heart rate, work, volume of expired oxygen (VO2), volume of expired carbon dioxide (VCO2), minute ventilation (VE), deoxyhemoglobin (ΔHHb) (P < .001), and lower tissue saturation index (ΔTSI%) and ΔO2Hb (oxyhaemoglobin; P < .001). At an RPE of 9, shorter durations resulted in lower VO2 (P < .05) and decreased ΔTSI%, and the ΔHHb increased as the duration increased (P < .05). At an RPE of 13, shorter durations resulted in lower VO2, VE, and percentage of maximum oxygen consumption (P < .001), as well as higher power, heart rate, ΔHHb (P < .001), and ΔTSI% (P < .05). At an RPE of 17, power (P < .001) and ΔTSI% (P < .05) increased as duration decreased. As intensity and duration increased, WAV and BAV in power, work, heart rate, VO2, VCO2, and VE decreased, and WAV and BAV in near-infrared spectroscopy increased. CONCLUSIONS: Self-paced intensity prescriptions of high effort and long duration result in the greatest consistency on both a within- and between-athletes basis.


Assuntos
Exercício Físico , Esforço Físico , Atletas , Exercício Físico/fisiologia , Teste de Esforço , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia
3.
Int J Sports Physiol Perform ; 15(7): 982-989, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244222

RESUMO

PURPOSE: Maximal oxygen uptake (V˙O2max) is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. METHODS: Fourteen cyclists (V˙O2max 69.2 [6.6] mL·kg-1·min-1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. RESULTS: Cyclists spent more time at >90%V˙O2max during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation (V˙E) was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with ΔV˙E (r = .36, P = .002). CONCLUSIONS: In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of V˙O2max when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.

4.
J Appl Physiol (1985) ; 115(5): 723-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813527

RESUMO

The purpose of this study was to assess the influence of age, training status, and muscle fiber-type distribution on cycling efficiency. Forty men were recruited into one of four groups: young and old trained cyclists, and young and old untrained individuals. All participants completed an incremental ramp test to measure their peak O2 uptake, maximal heart rate, and maximal minute power output; a submaximal test of cycling gross efficiency (GE) at a series of absolute and relative work rates; and, in trained participants only, a 1-h cycling time trial. Finally, all participants underwent a muscle biopsy of their right vastus lateralis muscle. At relative work rates, a general linear model found significant main effects of age and training status on GE (P < 0.01). The percentage of type I muscle fibers was higher in the trained groups (P < 0.01), with no difference between age groups. There was no relationship between fiber type and cycling efficiency at any work rate or cadence combination. Stepwise multiple regression indicated that muscle fiber type did not influence cycling performance (P > 0.05). Power output in the 1-h performance trial was predicted by average O2 uptake and GE, with standardized ß-coefficients of 0.94 and 0.34, respectively, although some mathematical coupling is evident. These data demonstrate that muscle fiber type does not affect cycling efficiency and was not influenced by the aging process. Cycling efficiency and the percentage of type I muscle fibers were influenced by training status, but only GE at 120 revolutions/min was seen to predict cycling performance.


Assuntos
Ciclismo/fisiologia , Exercício Físico/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Resistência Física/fisiologia , Metabolismo Energético/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Fibras Musculares de Contração Lenta/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia
5.
Res Sports Med ; 16(1): 56-67, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18373289

RESUMO

The purpose of this study was to investigate whether postactivation potentiation (PAP) would have any effect on high intensity cycle ergometer performance. Two different squatting exercises of different loads were presented in a random fashion prior to ergometric exercise. Seven male rugby players volunteered to participate in the study. There were no significant differences observed between peak power output (PPO) measurements for all three testing conditions (P > 0.05). There were also no differences recorded between mean power outputs (MPOs) and end power outputs (EPOs) (P > 0.05). The decrease in power output (FI %) also was found to be nonsignificant for all conditions (P > 0.05). The findings of this study indicate that performance of repeated heavy squats prior to a 30-second maximal cycle ergometer exercise did not improve the power profiles recorded and did not induce PAP at the time of testing.


Assuntos
Ciclismo/fisiologia , Potenciação de Longa Duração/fisiologia , Esforço Físico/fisiologia , Adulto , Desempenho Atlético/fisiologia , Humanos , Masculino , Contração Muscular , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA