Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045344

RESUMO

Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells, through a mitochondria-regulated molecular circuit that connects the p53 tumor suppressor and cytoplasmic chromatin fragments (CCF), a driver of inflammation through the cGAS-STING pathway. Activation or inactivation of p53 by genetic and pharmacologic approaches showed that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), independent of its effects on cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 by pharmacological inhibition of MDM2 in old mice decreased features of SASP in liver, indicating a senomorphic role in vivo . Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53-CCF circuit in senescent cells that controls DNA repair, genome integrity and inflammatory SASP, and is a potential target for senomorphic healthy aging interventions.

2.
Cell Rep ; 41(6): 111596, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351380

RESUMO

Targeting early-stage lung cancer is vital to improve survival. However, the mechanisms and components of the early tumor suppressor response in lung cancer are not well understood. In this report, we study the role of Toll-like receptor 2 (TLR2), a regulator of oncogene-induced senescence, which is a key tumor suppressor response in premalignancy. Using human lung cancer samples and genetically engineered mouse models, we show that TLR2 is active early in lung tumorigenesis, where it correlates with improved survival and clinical regression. Mechanistically, TLR2 impairs early lung cancer progression via activation of cell intrinsic cell cycle arrest pathways and the proinflammatory senescence-associated secretory phenotype (SASP). The SASP regulates non-cell autonomous anti-tumor responses, such as immune surveillance of premalignant cells, and we observe impaired myeloid cell recruitment to lung tumors after Tlr2 loss. Last, we show that administration of a TLR2 agonist reduces lung tumor growth, highlighting TLR2 as a possible therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Genes Supressores de Tumor , Pulmão/metabolismo , Senescência Celular/genética
3.
Nat Aging ; 2(7): 601-615, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36147777

RESUMO

Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses p16 Ink4a together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by p2 Cip1 . Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Camundongos , Animais , Envelhecimento/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fenótipo , Músculo Esquelético
4.
Nat Commun ; 13(1): 4827, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974106

RESUMO

Although cellular senescence drives multiple age-related co-morbidities through the senescence-associated secretory phenotype, in vivo senescent cell identification remains challenging. Here, we generate a gene set (SenMayo) and validate its enrichment in bone biopsies from two aged human cohorts. We further demonstrate reductions in SenMayo in bone following genetic clearance of senescent cells in mice and in adipose tissue from humans following pharmacological senescent cell clearance. We next use SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from human and murine bone marrow/bone scRNA-seq data. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Using this senescence panel, we are able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways. SenMayo also represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , Tecido Adiposo , Idoso , Envelhecimento/metabolismo , Animais , Osso e Ossos , Senescência Celular/genética , Humanos , Camundongos
5.
Aging Cell ; 21(5): e13602, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363946

RESUMO

Cellular senescence, which is a major cause of tissue dysfunction with aging and multiple other conditions, is known to be triggered by p16Ink4a or p21Cip1 , but the relative contributions of each pathway toward inducing senescence are unclear. Here, we directly addressed this issue by first developing and validating a p21-ATTAC mouse with the p21Cip1 promoter driving a "suicide" transgene encoding an inducible caspase-8 which, upon induction, selectively kills p21Cip1 -expressing senescent cells. Next, we used the p21-ATTAC mouse and the established p16-INK-ATTAC mouse to directly compare the contributions of p21Cip1 versus p16Ink4a in driving cellular senescence in a condition where a tissue phenotype (bone loss and increased marrow adiposity) is clearly driven by cellular senescence-specifically, radiation-induced osteoporosis. Using RNA in situ hybridization, we confirmed the reduction in radiation-induced p21Cip1 - or p16Ink4a -driven transcripts following senescent cell clearance in both models. However, only clearance of p21Cip1 +, but not p16Ink4a +, senescent cells prevented both radiation-induced osteoporosis and increased marrow adiposity. Reduction in senescent cells with dysfunctional telomeres following clearance of p21Cip1 +, but not p16Ink4a +, senescent cells also reduced several of the radiation-induced pro-inflammatory senescence-associated secretory phenotype factors. Thus, by directly comparing senescent cell clearance using two parallel genetic models, we demonstrate that radiation-induced osteoporosis is driven predominantly by p21Cip1 - rather than p16Ink4a -mediated cellular senescence. Further, this approach can be used to dissect the contributions of these pathways in other senescence-associated conditions, including aging across tissues.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Osteoporose , Adiposidade , Animais , Medula Óssea/metabolismo , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Camundongos , Obesidade , Osteoporose/genética
6.
J Bone Miner Res ; 37(5): 997-1011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247283

RESUMO

Oxidative stress-induced reactive oxygen species, DNA damage, apoptosis, and cellular senescence have been associated with reduced osteoprogenitors in a reciprocal fashion to bone marrow adipocyte tissue (BMAT); however, a direct (causal) link between cellular senescence and BMAT is still elusive. Accumulation of senescent cells occur in naturally aged and in focally radiated bone tissue, but despite amelioration of age- and radiation-associated bone loss after senescent cell clearance, molecular events that precede BMAT accrual are largely unknown. Here we show by RNA-Sequencing data that BMAT-related genes were the most upregulated gene subset in radiated bones of C57BL/6 mice. Using focal radiation as a model to understand age-associated changes in bone, we performed a longitudinal assessment of cellular senescence and BMAT. Using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), RNA in situ hybridization of p21 transcripts and histological assessment of telomere dysfunction as a marker of senescence, we observed an increase in senescent cell burden of bone cells from day 1 postradiation, without the presence of BMAT. BMAT was significantly elevated in radiated bones at day 7, confirming the qRT-PCR data in which most BMAT-related genes were elevated by day 7, and the trend continued until day 42 postradiation. Similarly, elevation in BMAT-related genes was observed in bones of aged mice. The senolytic cocktail of Dasatinib (D) plus Quercetin (Q) (ie, D + Q), which clears senescent cells, reduced BMAT in aged and radiated bones. MicroRNAs (miRNAs or miRs) linked with senescence marker p21 were downregulated in radiated and aged bones, whereas miR-27a, a miR that is associated with increased BMAT, was elevated both in radiated and aged bones. D + Q downregulated miR-27a in radiated bones at 42 days postradiation. Overall, our study provides evidence that BMAT occurrence in oxidatively stressed bone environments, such as radiation and aging, is induced following a common pathway and is dependent on the presence of senescent cells. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
MicroRNAs , Osteoporose , Adiposidade , Envelhecimento , Animais , Biomarcadores , Medula Óssea , Senescência Celular , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
7.
Cell Death Differ ; 29(6): 1267-1282, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34916628

RESUMO

Cytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS). Moreover, targeting caspase-4 expression in OIS showed its critical role in the senescence-associated secretory phenotype and the cell cycle arrest induced in cellular senescence. Finally, we observed that caspase-4 induction occurs in vivo in mouse models of tumor suppression and ageing. Altogether, we are showing that cellular senescence is induced by cytoplasmic LPS recognition by the noncanonical inflammasome and that this pathway is conserved in the cellular response to oncogenic stress.


Assuntos
Caspases Iniciadoras , Inflamassomos , Animais , Caspases Iniciadoras/imunologia , Senescência Celular/imunologia , Citoplasma/imunologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos
8.
Cell ; 184(22): 5506-5526, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715021

RESUMO

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Assuntos
Envelhecimento/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Doença , Animais , Humanos , Micronúcleo Germinativo/metabolismo , Retroelementos/genética
9.
Aging Cell ; 20(2): e13296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470505

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest and a pro-inflammatory senescence-associated secretory phenotype (SASP), which is a major contributor to aging and age-related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single-nuclei and single-cell RNA-seq in the hippocampus from young and aged mice. We observed an age-dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK-ATTAC mice, in which p16Ink4a -positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof-of-concept for senolytic interventions' being a potential therapeutic avenue for alleviating age-associated cognitive impairment.


Assuntos
Disfunção Cognitiva/patologia , Encefalite/patologia , Fatores Etários , Animais , Senescência Celular , Disfunção Cognitiva/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Encefalite/metabolismo , Camundongos , Camundongos Transgênicos
10.
J Immunol ; 206(4): 904-916, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33441438

RESUMO

Age-related chronic inflammation promotes cellular senescence, chronic disease, cancer, and reduced lifespan. In this study, we wanted to explore the effects of a moderate exercise regimen on inflammatory liver disease and tumorigenesis. We used an established model of spontaneous inflammaging, steatosis, and cancer (nfkb1-/- mouse) to demonstrate whether 3 mo of moderate aerobic exercise was sufficient to suppress liver disease and cancer development. Interventional exercise when applied at a relatively late disease stage was effective at reducing tissue inflammation (liver, lung, and stomach), oxidative damage, and cellular senescence, and it reversed hepatic steatosis and prevented tumor development. Underlying these benefits were transcriptional changes in enzymes driving the conversion of tryptophan to NAD+, this leading to increased hepatic NAD+ and elevated activity of the NAD+-dependent deacetylase sirtuin. Increased SIRT activity was correlated with enhanced deacetylation of key transcriptional regulators of inflammation and metabolism, NF-κB (p65), and PGC-1α. We propose that moderate exercise can effectively reprogram pre-established inflammatory and metabolic pathologies in aging with the benefit of prevention of disease.


Assuntos
Envelhecimento/imunologia , Carcinogênese/imunologia , Fígado Gorduroso/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Condicionamento Físico Animal , Envelhecimento/genética , Envelhecimento/patologia , Animais , Carcinogênese/patologia , Senescência Celular/imunologia , Fígado Gorduroso/imunologia , Fígado Gorduroso/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/imunologia
11.
Aging Cell ; 19(12): e13270, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166065

RESUMO

The idea that senescent cells are causally involved in aging has gained strong support from findings that the removal of such cells alleviates many age-related diseases and extends the life span of mice. While efforts proceed to make therapeutic use of such discoveries, it is important to ask what evolutionary forces might have been behind the emergence of cellular senescence, in order better to understand the biology that we might seek to alter. Cellular senescence is often regarded as an anti-cancer mechanism, since it limits the division potential of cells. However, many studies have shown that senescent cells often also have carcinogenic properties. This is difficult to reconcile with the simple idea of an anti-cancer mechanism. Furthermore, other studies have shown that cellular senescence is involved in wound healing and tissue repair. Here, we bring these findings and ideas together and discuss the possibility that these functions might be the main reason for the evolution of cellular senescence. Furthermore, we discuss the idea that senescent cells might accumulate with age because the immune system had to strike a balance between false negatives (overlooking some senescent cells) and false positives (destroying healthy body cells).


Assuntos
Senescência Celular , Envelhecimento/imunologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Evolução Biológica , Carcinogênese/patologia , Senescência Celular/imunologia , Senescência Celular/fisiologia , Humanos , Longevidade/fisiologia , Camundongos , Modelos Biológicos , Neoplasias/patologia , Neoplasias/prevenção & controle , Cicatrização/fisiologia
12.
Trends Mol Med ; 26(7): 630-638, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32589933

RESUMO

Cellular senescence is a primary aging process and tumor suppressive mechanism characterized by irreversible growth arrest, apoptosis resistance, production of a senescence-associated secretory phenotype (SASP), mitochondrial dysfunction, and alterations in DNA and chromatin. In preclinical aging models, accumulation of senescent cells is associated with multiple chronic diseases and disorders, geriatric syndromes, multimorbidity, and accelerated aging phenotypes. In animals, genetic and pharmacologic reduction of senescent cell burden results in the prevention, delay, and/or alleviation of a variety of aging-related diseases and sequelae. Early clinical trials have thus far focused on safety and target engagement of senolytic agents that clear senescent cells. We hypothesize that these pharmacologic interventions may have transformative effects on geriatric medicine.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Animais , Apoptose/fisiologia , Humanos , Doenças Mitocondriais/fisiopatologia , Fenótipo
13.
J Bone Miner Res ; 35(6): 1119-1131, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32023351

RESUMO

Clinical radiotherapy treats life-threatening cancers, but the radiation often affects neighboring normal tissues including bone. Acute effects of ionizing radiation include oxidative stress, DNA damage, and cellular apoptosis. We show in this study that a large proportion of bone marrow cells, osteoblasts, and matrix-embedded osteocytes recover from these insults only to attain a senescent profile. Bone analyses of senescence-associated genes, senescence-associated beta-galactosidase (SA-ß-gal) activity, and presence of telomere dysfunction-induced foci (TIF) at 1, 7, 14, 21, and 42 days post-focal radiation treatment (FRT) in C57BL/6 male mice confirmed the development of senescent cells and the senescence-associated secretory phenotype (SASP). Accumulation of senescent cells and SASP markers were correlated with a significant reduction in bone architecture at 42 days post-FRT. To test if senolytic drugs, which clear senescent cells, alleviate FRT-related bone damage, we administered the senolytic agents, dasatinib (D), quercetin (Q), fisetin (F), and a cocktail of D and Q (D+Q). We found moderate alleviation of radiation-induced bone damage with D and Q as stand-alone compounds, but no such improvement was seen with F. However, the senolytic cocktail of D+Q reduced senescent cell burden as assessed by TIF+ osteoblasts and osteocytes, markers of senescence (p16 Ink4a and p21), and key SASP factors, resulting in significant recovery in the bone architecture of radiated femurs. In summary, this study provides proof of concept that senescent cells play a role in radiotherapy-associated bone damage, and that reduction in senescent cell burden by senolytic agents is a potential therapeutic option for alleviating radiotherapy-related bone deterioration. © 2020 American Society for Bone and Mineral Research.


Assuntos
Apoptose , Senescência Celular , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos , Osteócitos
14.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001510

RESUMO

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Assuntos
Núcleo Celular/patologia , Senescência Celular/fisiologia , Cromatina/patologia , Citoplasma/patologia , Mitocôndrias/patologia , Transdução de Sinais , Animais , Núcleo Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
15.
Nat Commun ; 11(1): 307, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949142

RESUMO

Autophagy is an important cellular degradation pathway with a central role in metabolism as well as basic quality control, two processes inextricably linked to ageing. A decrease in autophagy is associated with increasing age, yet it is unknown if this is causal in the ageing process, and whether autophagy restoration can counteract these ageing effects. Here we demonstrate that systemic autophagy inhibition induces the premature acquisition of age-associated phenotypes and pathologies in mammals. Remarkably, autophagy restoration provides a near complete recovery of morbidity and a significant extension of lifespan; however, at the molecular level this rescue appears incomplete. Importantly autophagy-restored mice still succumb earlier due to an increase in spontaneous tumour formation. Thus, our data suggest that chronic autophagy inhibition confers an irreversible increase in cancer risk and uncovers a biphasic role of autophagy in cancer development being both tumour suppressive and oncogenic, sequentially.


Assuntos
Envelhecimento/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Longevidade/fisiologia , Neoplasias , Envelhecimento/genética , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Inflamação , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos , Fenótipo , Proteína Sequestossoma-1/metabolismo , Pele/patologia
16.
EMBO J ; 38(23): e101982, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633821

RESUMO

Cellular senescence has been shown to contribute to skin ageing. However, the role of melanocytes in the process is understudied. Our data show that melanocytes are the only epidermal cell type to express the senescence marker p16INK4A during human skin ageing. Aged melanocytes also display additional markers of senescence such as reduced HMGB1 and dysfunctional telomeres, without detectable telomere shortening. Additionally, senescent melanocyte SASP induces telomere dysfunction in paracrine manner and limits proliferation of surrounding cells via activation of CXCR3-dependent mitochondrial ROS. Finally, senescent melanocytes impair basal keratinocyte proliferation and contribute to epidermal atrophy in vitro using 3D human epidermal equivalents. Crucially, clearance of senescent melanocytes using the senolytic drug ABT737 or treatment with mitochondria-targeted antioxidant MitoQ suppressed this effect. In conclusion, our study provides proof-of-concept evidence that senescent melanocytes affect keratinocyte function and act as drivers of human skin ageing.


Assuntos
Envelhecimento/patologia , Atrofia/patologia , Senescência Celular , Melanócitos/patologia , Pele/patologia , Telômero/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Atrofia/induzido quimicamente , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Feminino , Humanos , Masculino , Melanócitos/metabolismo , Pessoa de Meia-Idade , Comunicação Parácrina , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/metabolismo , Pele/metabolismo , Telômero/metabolismo , Adulto Jovem
17.
EBioMedicine ; 47: 446-456, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31542391

RESUMO

BACKGROUND: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. METHODS: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ±â€¯3·1 years old; 2 female; BMI:33·9 ±â€¯2·3 kg/m2; eGFR:27·0 ±â€¯2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. FINDINGS: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated ß-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and -12. INTERPRETATION: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. FUND: NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.


Assuntos
Senescência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Nefropatias Diabéticas/metabolismo , Quercetina/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Idoso , Biomarcadores , Biópsia , Ensaios Clínicos Fase I como Assunto , Dasatinibe/uso terapêutico , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/tratamento farmacológico , Quimioterapia Combinada , Feminino , Humanos , Imuno-Histoquímica , Testes de Função Renal , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Quercetina/uso terapêutico
18.
Sci Adv ; 5(6): eaaw0254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31183403

RESUMO

Cellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21CIP1, p16INK4a, and p15INK4b and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS. Last, we found evidence that the cGAS-STING cytosolic DNA sensing pathway primes TLR2 and A-SAAs expression in OIS. In summary, we report that innate immune sensing of senescence-associated DAMPs by TLR2 controls the SASP and reinforces the cell cycle arrest program in OIS.


Assuntos
Senescência Celular , Imunidade Inata , Receptor 2 Toll-Like/metabolismo , Alarminas/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Receptor 10 Toll-Like/antagonistas & inibidores , Receptor 10 Toll-Like/genética , Receptor 10 Toll-Like/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
19.
Nat Commun ; 10(1): 2387, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160572

RESUMO

Senescent cells accumulate in human tissues during ageing and contribute to age-related pathologies. The mechanisms responsible for their accumulation are unclear. Here we show that senescent dermal fibroblasts express the non-classical MHC molecule HLA-E, which interacts with the inhibitory receptor NKG2A expressed by NK and highly differentiated CD8+ T cells to inhibit immune responses against senescent cells. HLA-E expression is induced by senescence-associated secretary phenotype-related pro-inflammatory cytokines, and is regulated by p38 MAP kinase signalling in vitro. Consistently, HLA-E expression is increased on senescent cells in human skin sections from old individuals, when compared with those from young, and in human melanocytic nevi relative to normal skin. Lastly, blocking the interaction between HLA-E and NKG2A boosts immune responses against senescent cells in vitro. We thus propose that increased HLA-E expression contributes to persistence of senescent cells in tissues, thereby suggesting a new strategy for eliminating senescent cells during ageing.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Senescência Celular/imunologia , Fibroblastos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Adulto , Idoso , Envelhecimento/patologia , Citocinas/imunologia , Derme/citologia , Fibroblastos/patologia , Humanos , Técnicas In Vitro , Nevo Pigmentado/congênito , Nevo Pigmentado/imunologia , Nevo Pigmentado/patologia , Fenótipo , RNA Interferente Pequeno , Transdução de Sinais , Pele/imunologia , Pele/patologia , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Antígenos HLA-E
20.
Aging Cell ; 18(3): e12945, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920115

RESUMO

Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age-related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof-of-concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.


Assuntos
Envelhecimento/efeitos dos fármacos , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Sulfonamidas/farmacologia , Doença Aguda , Compostos de Anilina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Sulfonamidas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA