Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927995

RESUMO

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Junções Comunicantes , Células-Tronco Neurais , Neuroglia , Octanóis , Animais , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ratos , Octanóis/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/citologia , Células Cultivadas , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Conexina 43/metabolismo , Ratos Wistar , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/citologia , Animais Recém-Nascidos , Humanos
2.
Neurotherapeutics ; 21(3): e00340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472048

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Tronco Encefálico , Neurônios Motores , Superóxido Dismutase-1 , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
3.
Front Neurosci ; 17: 1211467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655012

RESUMO

Introduction: The subventricular zone (SVZ) is a brain region that contains neural stem cells and progenitor cells (NSCs/NPCs) from which new neurons and glial cells are formed during adulthood in mammals. Recent data indicate that SVZ NSCs are the cell type that acquires the initial tumorigenic mutation in glioblastoma (GBM), the most aggressive form of malignant glioma. NSCs/NPCs of the SVZ present hemichannel activity whose function has not yet been fully elucidated. In this work, we aimed to analyze whether hemichannel-mediated communication affects proliferation of SVZ NPCs and GBM cells. Methods and Results: For that purpose, we used boldine, an alkaloid derived from the boldo tree (Peumus boldus), that inhibits connexin and pannexin hemichannels, but without affecting gap junctional communication. Boldine treatment (50 µM) of rat SVZ NPCs grown as neurospheres effectively inhibited dye uptake through hemichannels and induced a significant reduction in neurosphere diameter and in bromodeoxyuridine (BrdU) incorporation. However, the differentiation pattern was not modified by the treatment. Experiments with specific blockers for hemichannels formed by connexin subunits (D4) or pannexin 1 (probenecid) revealed that probenecid, but not D4, produced a decrease in BrdU incorporation similar to that obtained with boldine. These results suggest that inhibition of pannexin 1 hemichannels could be partially responsible for the antiproliferative effect of boldine on SVZ NPCs. Analysis of the effect of boldine (25-600 µM) on different types of primary human GBM cells (GBM59, GBM96, and U87-MG) showed a concentration-dependent decrease in GBM cell growth. Boldine treatment also induced a significant inhibition of hemichannel activity in GBM cells. Discussion: Altogether, we provide evidence of an antimitotic action of boldine in SVZ NPCs and in GBM cells which may be due, at least in part, to its hemichannel blocking function. These results could be of relevance for future possible strategies in GBM aimed to suppress the proliferation of mutated NSCs or glioma stem cells that might remain in the brain after tumor resection.

4.
Brain Struct Funct ; 228(3-4): 967-984, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37005931

RESUMO

The potassium chloride cotransporter 2 (KCC2) is the main Cl- extruder in neurons. Any alteration in KCC2 levels leads to changes in Cl- homeostasis and, consequently, in the polarity and amplitude of inhibitory synaptic potentials mediated by GABA or glycine. Axotomy downregulates KCC2 in many different motoneurons and it is suspected that interruption of muscle-derived factors maintaining motoneuron KCC2 expression is in part responsible. In here, we demonstrate that KCC2 is expressed in all oculomotor nuclei of cat and rat, but while trochlear and oculomotor motoneurons downregulate KCC2 after axotomy, expression is unaltered in abducens motoneurons. Exogenous application of vascular endothelial growth factor (VEGF), a neurotrophic factor expressed in muscle, upregulated KCC2 in axotomized abducens motoneurons above control levels. In parallel, a physiological study using cats chronically implanted with electrodes for recording abducens motoneurons in awake animals, demonstrated that inhibitory inputs related to off-fixations and off-directed saccades in VEGF-treated axotomized abducens motoneurons were significantly higher than in control, but eye-related excitatory signals in the on direction were unchanged. This is the first report of lack of KCC2 regulation in a motoneuron type after injury, proposing a role for VEGF in KCC2 regulation and demonstrating the link between KCC2 and synaptic inhibition in awake, behaving animals.


Assuntos
Simportadores , Fator A de Crescimento do Endotélio Vascular , Animais , Ratos , Movimentos Oculares , Neurônios Motores/fisiologia , Movimentos Sacádicos , Simportadores/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gatos
5.
Proc Natl Acad Sci U S A ; 119(26): e2202912119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727967

RESUMO

VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.


Assuntos
Movimentos Oculares , Neurônios Motores , Terminações Pré-Sinápticas , Fator A de Crescimento do Endotélio Vascular , Animais , Anticorpos Neutralizantes , Axotomia , Gatos , Movimentos Oculares/efeitos dos fármacos , Movimentos Oculares/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Músculos Oculomotores/efeitos dos fármacos , Músculos Oculomotores/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
6.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445804

RESUMO

Neural progenitor cells (NPCs) are self-renewing and multipotent cells that persist in the postnatal and adult brain in the subventricular zone and the hippocampus. NPCs can be expanded in vitro to be used in cell therapy. However, expansion is limited, since the survival and proliferation of adult NPCs decrease with serial passages. Many signaling pathways control NPC survival and renewal. Among these, purinergic receptor activation exerts differential effects on the biology of adult NPCs depending on the cellular context. In this study, we sought to analyze the effect of a general blockade of purinergic receptors with suramin on the proliferation and survival of NPCs isolated from the subventricular zone of postnatal rats, which are cultured as neurospheres. Treatment of neurospheres with suramin induced a significant increase in neurosphere diameter and in NPC number attributed to a decrease in apoptosis. Proliferation and multipotency were not affected. Suramin also induced an increase in the gap junction protein connexin43 and in vascular endothelial growth factor, which might be involved in the anti-apoptotic effect. Our results offer a valuable tool for increasing NPC survival before implantation in the lesioned brain and open the possibility of using this drug as adjunctive therapy to NPC transplantation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos/metabolismo , Células-Tronco/efeitos dos fármacos , Suramina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Masculino , Células-Tronco Neurais/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467517

RESUMO

Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem pools. That higher VEGF level could be due to an enhanced retrograde input from their target muscles, but it can also be produced by the motoneurons themselves and act in an autocrine way. By contrast, VEGF's paracrine supply from the vicinity cells, such as glial cells, seems to represent a minor source of VEGF for brainstem motoneurons. In addition, ocular motoneurons experiment an increase in VEGF and Flk-1 level in response to axotomy, not observed in facial or hypoglossal motoneurons. Therefore, in this review, we summarize the differences in VEGF availability that could contribute to the higher resistance of extraocular motoneurons to injury and neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Tronco Encefálico/metabolismo , Neurônios Motores/metabolismo , Complexo Nuclear Oculomotor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32371476

RESUMO

Vascular endothelial growth factor (VEGF) has been recently demonstrated to induce neuroprotective and synaptotrophic effects on lesioned neurons. Hitherto, the administration of VEGF in different animal models of lesion or disease has been conducted following a chronic protocol of administration. We questioned whether a single dose of VEGF, administered intraventricularly, could induce long-term neurotrophic effects on injured motoneurons. For this purpose, we performed in cats the axotomy of abducens motoneurons and the injection of VEGF into the fourth ventricle in the same surgical session and investigated the discharge characteristics of axotomized and treated motoneurons by single-unit extracellular recordings in the chronic alert preparation. We found that injured motoneurons treated with a single VEGF application discharged with normal characteristics, showing neuronal eye position (EP) and velocity sensitivities similar to control, thereby preventing the axotomy-induced alterations. These effects were present for a prolonged period of time (50 d) after VEGF administration. By confocal immunofluorescence we also showed that the synaptic stripping that ensues lesion was not present, rather motoneurons showed a normal synaptic coverage. Moreover, we demonstrated that VEGF did not lead to any angiogenic response pointing to a direct action of the factor on neurons. In summary, a single dose of VEFG administered just after motoneuron axotomy is able to prevent for a long time the axotomy-induced firing and synaptic alterations without any associated vascular sprouting. We consider that these data are of great relevance due to the potentiality of VEGF as a therapeutic agent in neuronal lesions and diseases.


Assuntos
Neurônios Motores , Fator A de Crescimento do Endotélio Vascular , Animais , Axotomia , Gatos , Injeções Intraventriculares
9.
Brain Struct Funct ; 225(3): 1033-1053, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32189115

RESUMO

Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.


Assuntos
Tronco Encefálico/metabolismo , Neurônios Motores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/metabolismo , Axotomia , Músculos Faciais/inervação , Microglia/metabolismo , Músculos Oculomotores/inervação , Ratos Wistar , Língua/inervação
10.
Front Oncol ; 9: 779, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482066

RESUMO

Human glioblastoma is the most aggressive type of primary malignant brain tumors. Standard treatment includes surgical resection followed by radiation and chemotherapy but it only provides short-term benefits and the prognosis of these brain tumors is still very poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal ability, which are partly responsible for the tumor resistance to therapy and for the tumor recurrence after treatment. The human adult subventricular zone contains astrocyte-like neural stem cells (NSCs) that are probably reminiscent of the radial glia present in embryonic brain development. There are numerous molecules involved in the biology of subventricular zone NSCs that are also instrumental in glioblastoma development. These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription factors, and growth factors. Interestingly, genes encoding these molecules are frequently mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the subventricular zone are a potential cell of origin that contains the driver mutations of human glioblastoma. In this review we will describe common features between GSCs and subventricular zone NSCs, and we will discuss the relevance of this important finding in terms of possible future therapeutic strategies.

11.
Cells ; 9(1)2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906023

RESUMO

The glioblastoma is the most malignant form of brain cancer. Glioblastoma cells use multiple ways of communication with the tumor microenvironment in order to tune it for their own benefit. Among these, extracellular vesicles have emerged as a focus of study in the last few years. Extracellular vesicles contain soluble proteins, DNA, mRNA and non-coding RNAs with which they can modulate the phenotypes of recipient cells. In this review we summarize recent findings on the extracellular vesicles-mediated bilateral communication established between glioblastoma cells and their tumor microenvironment, and the impact of this dialogue for tumor progression and recurrence.


Assuntos
Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/genética , Comunicação Celular/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/fisiologia , Humanos , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Microambiente Tumoral/genética
12.
Exp Neurol ; 304: 67-81, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29522757

RESUMO

Vascular endothelial growth factor (VEGF), also known as VEGF-A, was discovered due to its vasculogenic and angiogenic activity, but a neuroprotective role for VEGF was later proven for lesions and disorders. In different models of motoneuronal degeneration, VEGF administration leads to a significant reduction of motoneuronal death. However, there is no information about the physiological state of spared motoneurons. We examined the trophic role of VEGF on axotomized motoneurons with recordings in alert animals using the oculomotor system as the experimental model, complemented with a synaptic study at the confocal microscopy level. Axotomy leads to drastic alterations in the discharge characteristics of abducens motoneurons, as well as to a substantial loss of their synaptic inputs. Retrograde delivery of VEGF completely restored the discharge activity and synaptically-driven signals in injured motoneurons, as demonstrated by correlating motoneuronal firing rate with motor performance. Moreover, VEGF-treated motoneurons recovered a normal density of synaptic boutons around motoneuronal somata and in the neuropil, in contrast to the low levels of synaptic terminals found after axotomy. VEGF also reduced the astrogliosis induced by axotomy in the abducens nucleus to control values. The administration of VEGF-B produced results similar to those of VEGF. This is the first work demonstrating that VEGF and VEGF-B restore the normal operating mode and synaptic inputs on injured motoneurons. Altogether these data indicate that these molecules are relevant synaptotrophic factors for motoneurons and support their clinical potential for the treatment of motoneuronal disorders.


Assuntos
Neurônios Motores/fisiologia , Sinapses/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Axotomia/métodos , Gatos , Feminino
13.
PLoS One ; 12(6): e0178616, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570669

RESUMO

Recent studies show a relationship between the deficit of vascular endothelial growth factor (VEGF) and motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). VEGF delivery protects motoneurons from cell death and delayed neurodegeneration in animal models of ALS. Strikingly, extraocular motoneurons show lesser vulnerability to neurodegeneration in ALS compared to other cranial or spinal motoneurons. Therefore, the present study investigates possible differences in VEGF and its main receptor VEGFR-2 or Flk-1 between extraocular and non-extraocular brainstem motoneurons. We performed immunohistochemistry and Western blot to determine the presence of VEGF and Flk-1 in rat motoneurons located in the three extraocular motor nuclei (abducens, trochlear and oculomotor) and to compare it to that observed in two other brainstem nuclei (hypoglossal and facial) that are vulnerable to degeneration. Extraocular motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem motoneurons, and thus these molecules could be participating in their higher resistance to neurodegeneration. In conclusion, we hypothesize that differences in VEGF availability and signaling could be a contributing factor to the different susceptibility of extraocular motoneurons, when compared with other motoneurons, in neurodegenerative diseases.


Assuntos
Tronco Encefálico/metabolismo , Neurônios Motores/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Tronco Encefálico/citologia , Ratos , Ratos Wistar
14.
Glia ; 62(4): 623-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481572

RESUMO

Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.


Assuntos
Lesões Encefálicas/cirurgia , Junções Comunicantes/fisiologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Neuroglia/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais , Antígenos/metabolismo , Axotomia , Conexina 43/metabolismo , Junções Comunicantes/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/ultraestrutura , Proteoglicanas/metabolismo , Ratos , Ratos Wistar
15.
PLoS One ; 8(1): e54519, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349916

RESUMO

Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células-Tronco Neurais/transplante , Neurônios , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Axônios/metabolismo , Axotomia , Masculino , Fator de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos
16.
J Comp Neurol ; 519(12): 2335-52, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21456016

RESUMO

Neurotrophins acting through high-affinity tyrosine kinase receptors (trkA, trkB, and trkC) play a crucial role in regulating survival and maintenance of specific neuronal functions after injury. Adult motoneurons supplying extraocular muscles survive after disconnection from the target, but suffer dramatic changes in morphological and physiological properties, due in part to the loss of their trophic support from the muscle. To investigate the dependence of the adult rat extraocular motoneurons on neurotrophins, we examined trkA, trkB, and trkC mRNA expression after axotomy by in situ hybridization. trkA mRNA expression was detectable at low levels in unlesioned motoneurons, and its expression was downregulated 1 and 3 days after injury. Expression of trkB and trkC mRNAs was stronger, and after axotomy a simultaneous, but inverse regulation of both receptors was observed. Thus, whereas a considerable increase in trkB expression was seen about 2 weeks after axotomy, the expression of trkC mRNA had decreased at the same post-lesion period. Injured extraocular motoneurons also experienced an initial induction in expression of calcitonin gene-related peptide and a transient downregulation of cholinergic characteristics, indicating a switch in the phenotype from a transmitter-specific to a regenerative state. These results suggest that specific neurotrophins may contribute differentially to the survival and regenerative responses of extraocular motoneurons after lesion.


Assuntos
Neurônios Motores/patologia , Neurônios Motores/fisiologia , Músculos Oculomotores/inervação , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Animais , Axotomia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colina O-Acetiltransferase/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Mesencéfalo/citologia , Ratos , Ratos Wistar , Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética
17.
Front Neurosci ; 5: 17, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21415912

RESUMO

Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5'bromodeoxyuridine (5'BrdU) during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5'BrdU colocalization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons.

18.
J Neurosci ; 30(24): 8308-19, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20554882

RESUMO

Target-derived neurotrophins exert powerful synaptotrophic actions in the adult brain and are involved in the regulation of different forms of synaptic plasticity. Target disconnection produces a profound synaptic stripping due to the lack of trophic support. Consequently, target reinnervation leads to synaptic remodeling and restoration of cellular functions. Extraocular motoneurons are unique in that they normally express the TrkA neurotrophin receptor in the adult, a feature not seen in other cranial or spinal motoneurons, except after lesions such as axotomy or in neurodegenerative diseases like amyotrophic lateral sclerosis. We investigated the effects of nerve growth factor (NGF) by retrogradely delivering this neurotrophin to abducens motoneurons of adult cats. Axotomy reduced the density of somatic boutons and the overall tonic and phasic firing modulation. Treatment with NGF restored synaptic inputs and firing modulation in axotomized motoneurons. When K252a, a selective inhibitor of tyrosine kinase activity, was applied to specifically test TrkA effects, the NGF-mediated restoration of synapses and firing-related parameters was abolished. Discharge variability and recruitment threshold were, however, increased by NGF compared with control or axotomized motoneurons. Interestingly, these parameters returned to normal following application of REX, an antibody raised against neurotrophin receptor p75 (p75(NTR)). In conclusion, NGF, acting retrogradely through TrkA receptors, supports afferent boutons and regulates the burst and tonic signals correlated with eye movements. On the other hand, p75(NTR) activation regulates recruitment threshold, which impacts on firing regularity. To our knowledge, this is the first report showing powerful synaptotrophic effects of NGF on motoneurons in vivo.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Sinapses/fisiologia , Nervo Abducente/fisiologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Axotomia/métodos , Tronco Encefálico/citologia , Carbazóis/farmacologia , Gatos , Colina O-Acetiltransferase/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Movimentos Oculares/fisiologia , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos do Gene rex/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Alcaloides Indólicos/farmacologia , Neurônios Motores/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Recrutamento Neurofisiológico/efeitos dos fármacos , Recrutamento Neurofisiológico/fisiologia , Sinapses/efeitos dos fármacos , Sinaptofisina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
19.
Exp Neurol ; 195(1): 244-56, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15935346

RESUMO

The highly specific projection of abducens internuclear neurons onto medial rectus motoneurons in the oculomotor nucleus is a good model to evaluate the dependence on target cells for survival during development and in the adult. Thus, the procedure we chose to selectively deprive abducens internuclear neurons of their natural target was the enucleation of postnatal day 1 rats to induce the death of medial rectus motoneurons. Two months later, we evaluated both the extent of reduction in target size, by immunocytochemistry against choline acetyltransferase (ChAT) and Nissl counting, and the percentage of abducens internuclear neurons surviving target loss, by calretinin immunostaining and horseradish peroxidase (HRP) retrograde tracing. Firstly, axotomized oculomotor motoneurons died in a high percentage ( approximately 80%) as visualized 2 months after lesion. In addition, we showed a transient (1 month) and reversible down-regulation of ChAT expression in extraocular motoneurons induced by injury. Secondly, 2 months after enucleation, 61.6% and 60.5% of the population of abducens internuclear neurons appeared stained by retrograde tracing and calretinin immunoreaction, respectively, indicating a significant extent of cell death after target loss (38.4% or 39.5%). By contrast, in the adult rat, neither extraocular motoneurons died in response to axotomy nor abducens internuclear neurons died due to the loss of their target motoneurons induced by the retrograde transport of toxic ricin injected in the medial rectus muscle. These results indicate that, during development, abducens internuclear neurons depend on their target motoneurons for survival, and that they lose this dependence with maturation.


Assuntos
Nervo Abducente/crescimento & desenvolvimento , Nervo Abducente/patologia , Neurônios Motores/fisiologia , Vias Neurais/crescimento & desenvolvimento , Nervo Oculomotor/patologia , Análise de Variância , Animais , Animais Recém-Nascidos , Calbindina 2 , Contagem de Células/métodos , Sobrevivência Celular , Colina O-Acetiltransferase/metabolismo , Enucleação Ocular/métodos , Regulação da Expressão Gênica/fisiologia , Peroxidase do Rábano Silvestre/metabolismo , Imuno-Histoquímica/métodos , Vias Neurais/patologia , Ratos , Ratos Wistar , Degeneração Retrógrada , Proteína G de Ligação ao Cálcio S100/metabolismo , Coloração e Rotulagem/métodos , Fatores de Tempo
20.
J Comp Neurol ; 473(4): 538-52, 2004 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15116389

RESUMO

We examined the expression of the three Trk receptors for neurotrophins (TrkA, TrkB, and TrkC) in the extraocular motor nuclei of the adult cat by using antibodies directed against the full-Trk proteins in combination with horseradish peroxidase retrograde tracing. The three receptors were present in all neuronal populations investigated, including abducens motoneurons and internuclear neurons, medial rectus motoneurons of the oculomotor nucleus, and trochlear motoneurons. They were also present in the vestibular and prepositus hypoglossi nuclei. TrkA, TrkB, and TrkC immunopositive cells were found in similar percentages in the oculomotor and in the trochlear nuclei. In the abducens nucleus, however, a significantly higher percentage of cells expressed TrkB than the other two receptors, among both motoneurons (81.8%) and internuclear neurons (88.4%). The percentages obtained for the three Trk receptors in identified neuronal populations pointed to the colocalization of two or three receptors in a large number of cells. We used confocal microscopy to elucidate the subcellular location of Trk receptors. In this case, abducens motoneurons and internuclear neurons were identified with antibodies against choline acetyltransferase and calretinin, respectively. We found a different pattern of staining for each neurotrophin receptor, suggesting the possibility that each receptor and its cognate ligand may use a different route for cellular signaling. Therefore, the expression of Trk receptors in oculomotor, trochlear, and abducens motoneurons, as well as abducens internuclear neurons, suggests that their associated neurotrophins may exert an influence on the normal operation of the oculomotor circuitry. The presence of multiple Trk receptors on individual cells indicates that they likely act in concert with each other to regulate distinct functions.


Assuntos
Músculos Oculomotores/metabolismo , Nervo Oculomotor/metabolismo , Receptor trkA/biossíntese , Receptor trkB/biossíntese , Receptor trkC/biossíntese , Animais , Gatos , Regulação da Expressão Gênica/fisiologia , Neurônios Motores/química , Neurônios Motores/metabolismo , Músculos Oculomotores/química , Nervo Oculomotor/química , Receptor trkA/análise , Receptor trkB/análise , Receptor trkC/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA