Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(9): 10026-10037, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39329951

RESUMO

Far-Infrared Radiation (FIR) is emerging as a novel non-invasive tool for mitigating inflammation and oxidative stress, offering potential benefits for certain medical conditions such as cardiovascular disease and chronic inflammatory disorders. We previously demonstrated that the application of patch-based FIR therapy on human umbilical vein endothelial cells (HUVECs) reduced the expression of inflammatory biomarkers and the levels of reactive oxygen species (ROS). Several in vitro studies have shown the inhibitory effects of FIR therapy on cell growth in different cancer cells (including murine melanoma cells), mainly using the wound healing assay, without direct cell motility or tracking analysis. The main objective of the present study was to conduct an in-depth analysis of single-cell motility and tracking during the wound healing assay, using an innovative high-throughput technique in the human melanoma cell line M14/C2. This technique evaluates various motility descriptors, such as average velocity, average curvature, average turning angle, and diffusion coefficient. Our results demonstrated that patch-based FIR therapy did not impact cell proliferation and viability or the activation of mitogen-activated protein kinases (MAPKs) in the human melanoma cell line M14/C2. Moreover, no significant differences in cell motility and tracking were observed between control cells and patch-treated cells. Altogether, these findings confirm the beneficial effects of the in vitro application of patch-based FIR therapy in human melanoma cell lines, although such effects need to be confirmed in future in vivo studies.

2.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139152

RESUMO

Dietary consumption of olive oil represents a key pillar of the Mediterranean diet, which has been shown to exert beneficial effects on human health, such as the prevention of chronic non-communicable diseases like cancers and neurodegenerative diseases, among others. These health benefits are partly mediated by the high-quality extra virgin olive oil (EVOO), which is produced mostly in Mediterranean countries and is directly made from olives, the fruit of the olive tree (Olea europaea L.). Preclinical evidence supports the existence of antioxidant and anti-inflammatory properties exerted by the polyphenol oleocanthal, which belongs to the EVOO minor polar compound subclass of secoiridoids (like oleuropein). This narrative review aims to describe the antioxidant and anti-inflammatory properties of oleocanthal, as well as the potential anticancer and neuroprotective actions of this polyphenol. Based on recent evidence, we also discuss the reasons underlying the need to include the concentrations of oleocanthal and other polyphenols in the EVOO's nutrition facts label. Finally, we report our personal experience in the production of a certified organic EVOO with a "Protected Designation of Origin" (PDO), which was obtained from olives of three different cultivars (Rotondella, Frantoio, and Leccino) harvested in geographical areas located a short distance from one another (villages' names: Gorga and Camella) within the Southern Italy "Cilento, Vallo di Diano and Alburni National Park" of the Campania Region (Province of Salerno, Italy).


Assuntos
Dieta Mediterrânea , Olea , Humanos , Azeite de Oliva/análise , Antioxidantes/farmacologia , Polifenóis , Anti-Inflamatórios
3.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899850

RESUMO

Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.


Assuntos
Proteínas Quinases Ativadas por AMP , Adipogenia , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Polifenóis/farmacologia , Micronutrientes/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328530

RESUMO

Parkinson's disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos , Micronutrientes/metabolismo , Micronutrientes/farmacologia , Micronutrientes/uso terapêutico , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico
5.
Nutrients ; 13(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201106

RESUMO

Ischemic stroke (IS) is still among the leading causes of death and disability worldwide. The pathogenic mechanisms beyond its development are several and are complex and this is the main reason why a functional therapy is still missed. The beneficial effects of natural compounds against cardiovascular diseases and IS have been investigated for a long time. In this article, we reviewed the association between the most studied polyphenols and stroke protection in terms of prevention, effect on acute phase, and rehabilitation. We described experimental and epidemiological studies reporting the role of flavonols, phenolic acid, and stilbens on ischemic mechanisms leading to stroke. We analyzed the principal animal models used to evaluate the impact of these micronutrients to cerebral blood flow and to molecular pathways involved in oxidative stress and inflammation modulation, such as sirtuins. We reported the most significant clinical trials demonstrated as the persistent use of polyphenols is clinically relevant in terms of the reduction of vascular risk factors for IS, such as Atrial Fibrillation. Interestingly, different kinds of polyphenols provide brain protection by activating different pathways and mechanisms, like inducing antithrombotic effect, such as Honokiol. For this reason, we discussed an appropriate integrative use of them as a possible therapeutic alternative against stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Polifenóis/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Humanos , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
6.
Oxid Med Cell Longev ; 2020: 4794780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376578

RESUMO

Tyrosol (TR), a major polyphenol found in extra virgin olive oil (EVOO), exerts several antioxidant effects. However, only scarce evidences are present regarding its activity on adipocytes and obesity. This study evaluated the role of TR in adipogenesis. Murine 3T3-L1 preadipocytes were incubated with TR (300 and 500 µM), and TR administration inhibited adipogenesis by downregulation of several adipogenic factors (leptin and aP2) and transcription factors (C/EBPα, PPARγ, SREBP1c, and Glut4) and by modulation of the histone deacetylase sirtuin 1. After complete differentiation, adipocytes treated with 300 and 500 µM TR showed a reduction of 20% and 30% in lipid droplets, respectively. Intracellular triglycerides were significantly reduced after TR treatment (p < 0.05). Mature adipocytes treated with TR at 300 and 500 µM showed a marked decrease in the inflammatory state and oxidative stress as shown by the modulation of specific biomarkers (TNF, IL6, ROS, and SOD2). TR treatment also acted on the early stage of differentiation by reducing cell proliferation (~40%) and inducing cell cycle arrest during Mitotic Expansion Clonal (first 48 h of differentiation), as shown by the increase in both S1 phase and p21 protein expression. We also showed that TR induced lipolysis by activating the AMPK-ATGL-HSL pathway. In conclusion, we provided evidence that TR reduces 3T3-L1 differentiation through downregulation of adipogenic proteins, inflammation, and oxidative stress. Moreover, TR may trigger adipose tissue browning throughout the induction of the AMPK-ATGL-UCP1 pathway and, subsequently, may have promise as a potential therapeutic agent for the treatment and prevention of obesity.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Obesidade/prevenção & controle , Álcool Feniletílico/análogos & derivados , Células 3T3-L1 , Adipócitos/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Álcool Feniletílico/farmacologia
7.
Curr Pharm Des ; 26(34): 4323-4329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32338211

RESUMO

BACKGROUND: It is known from the most recent literature that far-infrared (FIR) radiations promote a broad spectrum of therapeutic benefits for cells and tissues. OBJECTIVE: To identify molecular mechanisms by which FIT patches, as a far infrared technology, protects against damage caused by inflammatory process and oxidative stress. METHODS: Endothelial cells (HUVEC, Human Umbilical Vein Endothelial Cells) were used as in vitro experimental model. HUVEC were stimulated with a pro-inflammatory cytokine, TNF-α, or hydrogen peroxide (H2O2) to induce oxidative stress. As markers of inflammation were evaluated: VCAM1 (Vascular Cell Adhesion Molecule 1), ICAM1 (Intercellular Adhesion Molecule 1) and E-Selectin by Western Blot analysis. Oxidative stress was assessed by cytofluorimetric analysis. The experiments were performed on control cells (no patch) or in cells treated with the FIT infrared technology applied on the basis of the culture plate. RESULTS: HUVEC stimulated with TNF-α and treated with FIT patches had significant reduction of the expression of VCAM1, ICAM1 and E-Selectin (p<0.05). HUVEC stimulated with H2O2 and treated with FIT patches were significantly protected from oxidative stress (p <0.01) when compared to control cells. We measured cell viability and proliferation in HUVEC and HEK-293 (Human embryonic kidney cells) cells by MTT assay. HEK-293 and HUVEC treated with FIT patches showed a significantly higher percentage of basal vitality compared to control cells (p<0.0001 for HEK-293, p<0.05 for HUVEC). CONCLUSION: FIT therapy patches - infrared technology, through these protective mechanisms, could be used in all pathologies where an increase in inflammation, oxidative stress and degenerative state are present.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Adesão Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Tecnologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Cancer ; 146(1): 236-247, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479522

RESUMO

Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cetuximab/administração & dosagem , Neoplasias/tratamento farmacológico , Panitumumabe/administração & dosagem , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de IgG/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Neoplasias/metabolismo , Linfócitos T/metabolismo
9.
Antioxid Redox Signal ; 30(3): 399-414, 2019 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-29160110

RESUMO

SIGNIFICANCE: Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES: Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS: Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.


Assuntos
Antioxidantes/metabolismo , Doenças não Transmissíveis , Peroxirredoxina VI/metabolismo , Animais , Doença Crônica , Humanos
10.
Oxid Med Cell Longev ; 2019: 9685607, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949886

RESUMO

Insulin action and often glucose-stimulated insulin secretion are reduced in obesity. In addition, the excessive intake of lipids increases oxidative stress leading to overt type 2 diabetes mellitus (T2DM). Among the antioxidative defense systems, peroxiredoxin 6 (PRDX6) is able to reduce H2O2 and short chain and phospholipid hydroperoxides. Increasing evidences suggest that PRDX6 is involved in the pathogenesis of atherosclerosis and T2DM, but its role in the etiopathology of obesity and its complications is still not known. Therefore, in the present study, we sought to investigate this association by using PRDX6 knockout mice (PRDX6-/-). Metabolic parameters, like carbon dioxide (VCO2) production, oxygen consumption (VO2), and the respiratory exchange ratio (RER), were determined using metabolic cages. Intraperitoneal insulin and glucose tolerance tests were performed to evaluate insulin sensitivity and glucose tolerance, respectively. Liver and pancreas histochemical analyses were also evaluated. The expression of enzymes involved in lipid and glucose metabolism was analyzed by real-time PCR. Following 24 weeks of high-fat-diet (HFD), PRDX6-/- mice showed weight gain and higher food and drink intake compared to controls. VO2 consumption and VCO2 production decreased in PRDX6-/- mice, while the RER was lower than 0.7 indicating a prevalent lipid metabolism. PRDX6-/- mice fed with HFD showed a further deterioration on insulin sensitivity and glucose-stimulated insulin secretion. Furthermore, in PRDX6-/- mice, insulin did not suppress adipose tissue lipolysis with consequent hepatic lipid overload and higher serum levels of ALT, cholesterol, and triglycerides. Interestingly, in PRDX6-/- mice, liver and adipose tissue were associated with proinflammatory gene upregulation. Finally, PRDX6-/- mice showed a higher rate of nonalcoholic steatohepatitis (NASH) compared to control. Our results suggest that PRDX6 may have a functional and protective role in the development of obesity-related metabolic disorders such as liver diseases and T2DM and may be considered a potential therapeutic target against these illnesses.


Assuntos
Adipogenia , Glicemia/metabolismo , Células Secretoras de Insulina/patologia , Insulina/metabolismo , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/patologia , Peroxirredoxina VI/fisiologia , Animais , Antioxidantes , Dieta Hiperlipídica/efeitos adversos , Feminino , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações
11.
Pharmacol Res ; 111: 659-667, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27461137

RESUMO

Epsilon Protein kinase C (εPCK) is a particular kinase that, when activated, is able to protect against different stress injuries and therefore has been proposed to be a potential molecular target against acute and chronic diseases. Particular attention has been focused on εPCK for its involvement in the protective mechanism of Ischemic Preconditioning (IPC), a powerful endogenous mechanism characterized by subthreshold ischemic insults able to protect organs against ischemic injury. Therefore, in the past decades several εPCK modulators have been tested with the object to emulate εPCK mediate protection. Among these the most promising, so far, has been the ΨεRACK peptide, a homologous of RACK receptor for εPKC, that when administrated can mimic its effect in the cells. However, results from studies on εPCK indicate controversial role of this kinase in different organs and diseases, such as myocardial infarct, stroke, diabetes and cancer. Therefore, in this review we provide a discussion on the function of εPCK in acute and chronic diseases and how the different activators and inhibitors have been used to modulate its activity. A better understanding of its function is still needed to definitively target εPCK as novel therapeutic strategy.


Assuntos
Proteína Quinase C-épsilon/metabolismo , Doença Aguda , Animais , Doença Crônica , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Humanos , Doenças Metabólicas/metabolismo , Neoplasias/metabolismo , Neuroproteção
12.
Anim Reprod Sci ; 172: 105-13, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449407

RESUMO

In a combined approach, endocrine and ultrasonic analyses were performed to assess reproduction of two syntopic populations of terrestrial Galápagos iguanas the Conolophus marthae (the Galápagos Pink Land Iguana) and C. subcristatus on the Volcán Wolf (Isabela Island). The ELISA methods (enzyme-linked immunosorbent assay) were used to measure plasma concentrations of progesterone (P4) and 17ß-estradiol (E2) from samples collected over the course of three different seasons: July 2010, June 2012-2014. As for C. subcristatus, the large number of females with eggs in 2012 and 2014 were associated with increased plasma P4 concentrations and the corresponding absence of females with eggs in July 2010 when concentrations of both hormones levels were basal indicating reproduction was still ongoing in June and had ended in July. In C. marthae, even though there was a positive relationship between egg-development stages and hormone concentrations, P4 concentrations were basal through the three years that samples were collected, with some females having a lesser number of eggs compared with C. subcristatus. In C. marthae P4 and E2 patterns did not allow for defining a specific breeding season.


Assuntos
Estradiol/fisiologia , Lagartos/sangue , Progesterona/sangue , Reprodução/fisiologia , Animais , Equador , Feminino , Lagartos/fisiologia
13.
Pharmacogenomics ; 16(1): 61-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25560471

RESUMO

Vascular endothelial growth factors (VEGFs) are the key regulators in angiogenesis and have been shown to play a significant role in the progression and prognosis of angiogenesis-related diseases, such as cancer. VEGF inhibitors are a current pharmacological tumoral strategy. However, despite the strong association between aging and cancer incidence and progression, recent findings suggest impaired angiogenesis accompanied by a reduced expression of VEGF in cells derived from aging subjects. Specific variations of VEGF genes have been demonstrated to be genetic determinants for susceptibility, outcome and therapy response, especially for the solid tumors. Considering the complications present in frail elderly patients, analysis of VEGF genetic polymorphisms in these subjects may further help in tailoring an angiogenic pharmacological strategy, and in improving our ability to better understand prognosis during therapy-related to cancer.


Assuntos
Neoplasias/genética , Neovascularização Patológica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Idoso , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Polimorfismo Genético , Prognóstico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese
14.
J Cell Physiol ; 195(1): 27-37, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12599206

RESUMO

During ischemia/reperfusion (I/R), cardiomyocytes are exposed to sudden lack of nutrients and successively to radical oxygen species (ROS). In the present study, we used the HL-5 cardiac atrial myocyte cell line exposed to serum/glucose depletion added or not in H(2)O(2) to mimic ROS during ischemia, then replaced in their standard culture medium to simulate reperfusion. We investigated the effects of serum/glucose depletion combined or not to ROS exposure on AKT and MAP kinases activation to address the role of each event with respect to apoptosis. We demonstrate that serum/glucose depletion per se did not induce apoptosis when compared to ROS exposure. In particular, ROS recruited p38MAPK and JNK pathways. SB202190 preventing p38MAPK activity, partially protected HL-5 from apoptosis while blocking JNK, thanks to JNKI, further enhanced apoptosis. Blocking phosphatidylinositol (PI) 3-kinase with LY294002 or ERKs with U0126 was without consequence on apoptosis. Finally, BCL-2 and BCL-X(L/S) expression levels were analyzed in cells exposed to 1 h ischemia followed by 12-h reperfusion in the presence or not of SB202190; BCL-2, but not BCL-X(L/S), expression was decreased in ROS treated cells but SB202190 failed to restore BCL-2 level. Our data suggest that p38MAPK activation primarily mediates ROS-induced apoptosis while concomitant JNK activation would represent a scavenger pathway for cells trying to escape apoptosis.


Assuntos
Apoptose/fisiologia , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Oxidantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína bcl-X , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA