Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Allergy Asthma Rep ; 24(7): 331-345, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38884832

RESUMO

PURPOSE OF REVIEW: Modernization and Westernization in industrialized and developing nations is associated with a substantial increase in chronic noncommunicable diseases. This transformation has far-reaching effects on lifestyles, impacting areas such as economics, politics, social life, and culture, all of which, in turn, have diverse influences on public health. Loss of contact with nature, alternations in the microbiota, processed food consumption, exposure to environmental pollutants including chemicals, increased stress and decreased physical activity jointly result in increases in the frequency of inflammatory disorders including allergies and many autoimmune and neuropsychiatric diseases. This review aims to investigate the relationship between Western lifestyle and inflammatory disorders. RECENT FINDINGS: Several hypotheses have been put forth trying to explain the observed increases in these diseases, such as 'Hygiene Hypothesis', 'Old Friends', and 'Biodiversity and Dysbiosis'. The recently introduced 'Epithelial Barrier Theory' incorporates these former hypotheses and suggests that toxic substances in cleaning agents, laundry and dishwasher detergents, shampoos, toothpastes, as well as microplastic, packaged food and air pollution damage the epithelium of our skin, lungs and gastrointestinal system. Epithelial barrier disruption leads to decreased biodiversity of the microbiome and the development of opportunistic pathogen colonization, which upon interaction with the immune system, initiates local and systemic inflammation. Gaining a deeper comprehension of the interplay between the environment, microbiome and the immune system provides the data to assist with legally regulating the usage of toxic substances, to enable nontoxic alternatives and to mitigate these environmental challenges essential for fostering a harmonious and healthy global environment.


Assuntos
Hipersensibilidade , Desenvolvimento Industrial , Estilo de Vida , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/etiologia , Exposição Ambiental/efeitos adversos
2.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38227765

RESUMO

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Assuntos
Material Particulado , Emissões de Veículos , Humanos , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade , Junções Íntimas , Alérgenos , Estresse Oxidativo , Células Epiteliais
3.
Allergy ; 79(1): 128-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37766519

RESUMO

BACKGROUND: Epithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air-liquid interface cultures of human epithelial cells. METHODS: Back skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA-seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6-h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin. RESULTS: Detergent-treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose-response in EIS. The RNA-seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion-related proteins, such as epithelial cell adhesion molecule and contactin-1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model. CONCLUSION: The present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases.


Assuntos
Detergentes , Pele , Humanos , Camundongos , Animais , Detergentes/efeitos adversos , Detergentes/química , Detergentes/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo , Epiderme/metabolismo , Inflamação/metabolismo
4.
Ann Allergy Asthma Immunol ; 131(6): 703-712, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37619777

RESUMO

The epithelial barrier represents the point of contact between the host and the external environment. It is the first line of defense against external insults in the skin and in the gastrointestinal and upper and lower respiratory tracts. The steep increase in chronic disorders in recent decades, including allergies and autoimmune disorders, has prompted studies to investigate the immune mechanisms of their underlying pathogeneses, all of which point to a thought-provoking shared finding: disrupted epithelial barriers. Climate change with global warming has increased the frequency of unpredictable extreme weather events, such as wildfires, droughts, floods, and aberrant and longer pollination seasons, among many others. These increasingly frequent natural disasters can synergistically damage the epithelial barrier integrity in the presence of environmental pollution. A disrupted epithelial barrier induces proinflammatory activation of epithelial cells and alarmin production, namely, epithelitis. The "opened" epithelial barrier facilitates the entry of the external exposome into and underneath the epithelium, triggering an expulsion response driven by inflammatory cells in the area and chronic inflammation. These changes are associated with microbial dysbiosis with colonizing opportunistic pathogens and decreased commensals. These cellular and molecular events are key mechanisms in the pathogenesis of numerous chronic inflammatory disorders. This review summarizes the impact of global warming on epithelial barrier functions in the context of allergic diseases. Further studies in the impact of climate change on the dysfunction of the epithelial barriers are warranted to improve our understanding of epithelial barrier-related diseases and raise awareness of the environmental insults that pose a threat to our health.


Assuntos
Aquecimento Global , Hipersensibilidade , Humanos , Epitélio , Inflamação , Células Epiteliais
5.
Allergy ; 78(9): 2441-2455, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37530764

RESUMO

BACKGROUND: The rising prevalence of many chronic diseases related to gut barrier dysfunction coincides with the increased global usage of dietary emulsifiers in recent decades. We therefore investigated the effect of the frequently used food emulsifiers on cytotoxicity, barrier function, transcriptome alterations, and protein expression in gastrointestinal epithelial cells. METHODS: Human intestinal organoids originating from induced pluripotent stem cells, colon organoid organ-on-a-chip, and liquid-liquid interface cells were cultured in the presence of two common emulsifiers: polysorbate 20 (P20) and polysorbate 80 (P80). The cytotoxicity, transepithelial electrical resistance (TEER), and paracellular-flux were measured. Immunofluorescence staining of epithelial tight-junctions (TJ), RNA-seq transcriptome, and targeted proteomics were performed. RESULTS: Cells showed lysis in response to P20 and P80 exposure starting at a 0.1% (v/v) concentration across all models. Epithelial barrier disruption correlated with decreased TEER, increased paracellular-flux and irregular TJ immunostaining. RNA-seq and targeted proteomics analyses demonstrated upregulation of cell development, signaling, proliferation, apoptosis, inflammatory response, and response to stress at 0.05%, a concentration lower than direct cell toxicity. A proinflammatory response was characterized by the secretion of several cytokines and chemokines, interaction with their receptors, and PI3K-Akt and MAPK signaling pathways. CXCL5, CXCL10, and VEGFA were upregulated in response to P20 and CXCL1, CXCL8 (IL-8), CXCL10, LIF in response to P80. CONCLUSIONS: The present study provides direct evidence on the detrimental effects of food emulsifiers P20 and P80 on intestinal epithelial integrity. The underlying mechanism of epithelial barrier disruption was cell death at concentrations between 1% and 0.1%. Even at concentrations lower than 0.1%, these polysorbates induced a proinflammatory response suggesting a detrimental effect on gastrointestinal health.


Assuntos
Fosfatidilinositol 3-Quinases , Polissorbatos , Humanos , Polissorbatos/efeitos adversos , Polissorbatos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Citocinas/metabolismo , Dieta , Mucosa Intestinal/metabolismo
6.
J Allergy Clin Immunol ; 151(2): 469-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464527

RESUMO

BACKGROUND: The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE: We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS: Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS: The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS: The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.


Assuntos
Detergentes , Células Epiteliais , Humanos , Detergentes/metabolismo , Células Epiteliais/metabolismo , Trato Gastrointestinal , Regulação para Cima , RNA/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo
8.
Chin Med J (Engl) ; 135(5): 519-531, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170505

RESUMO

ABSTRACT: Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma, the structure and molecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the airway epithelial barrier are reviewed.


Assuntos
Asma , Rinite Alérgica , Sinusite , Humanos , Inflamação , Sistema Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA