Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852856

RESUMO

Immune checkpoint blockade (ICB) has demonstrated clinical success in "inflamed" tumors with substantial T cell infiltrates, but tumors with an immune-desert tumor microenvironment (TME) fail to benefit. The tumor cell-intrinsic molecular mechanisms of the immune-desert phenotype remain poorly understood. Here, we demonstrated that inactivation of the polycomb-repressive complex 2 (PRC2) core components embryonic ectoderm development (EED) or suppressor of zeste 12 homolog (SUZ12), a prevalent genetic event in malignant peripheral nerve sheath tumors (MPNSTs) and sporadically in other cancers, drove a context-dependent immune-desert TME. PRC2 inactivation reprogramed the chromatin landscape that led to a cell-autonomous shift from primed baseline signaling-dependent cellular responses (e.g., IFN-γ signaling) to PRC2-regulated developmental and cellular differentiation transcriptional programs. Further, PRC2 inactivation led to diminished tumor immune infiltrates through reduced chemokine production and impaired antigen presentation and T cell priming, resulting in primary resistance to ICB. Intratumoral delivery of inactivated modified vaccinia virus Ankara (MVA) enhanced tumor immune infiltrates and sensitized PRC2-loss tumors to ICB. Our results identify molecular mechanisms of PRC2 inactivation-mediated, context-dependent epigenetic reprogramming that underline the immune-desert phenotype in cancer. Our studies also point to intratumoral delivery of immunogenic viruses as an initial therapeutic strategy to modulate the immune-desert TME and capitalize on the clinical benefit of ICB.


Assuntos
Neoplasias , Vírus , Cromatina , Humanos , Complexo Repressor Polycomb 2/genética , Microambiente Tumoral , Vírus/genética
2.
Cancer Discov ; 12(9): 2120-2139, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35789380

RESUMO

Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE: PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Antineoplásicos , Neoplasias , Neurofibrossarcoma , Carcinogênese/genética , Humanos , Mutação , Neoplasias/genética , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Complexo Repressor Polycomb 2/genética , Retroelementos
3.
Clin Cancer Res ; 25(11): 3404-3416, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30796033

RESUMO

PURPOSE: BET bromodomain inhibitors have emerged as a promising therapy for numerous cancer types in preclinical studies, including neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumor (MPNST). However, potential mechanisms underlying resistance to these inhibitors in different cancers are not completely understood. In this study, we explore new strategy to overcome BET inhibitor resistance in MPNST.Experimental Design: Through modeling tumor evolution by studying genetic changes underlying the development of MPNST, a lethal sarcoma with no effective medical treatment, we identified a targetable addiction to BET bromodomain family member BRD4 in MPNST. This served as a controlled model system to delineate mechanisms of sensitivity and resistance to BET bromodomain inhibitors in this disease. RESULTS: Here, we show that a malignant progression-associated increase in BRD4 protein levels corresponds to partial sensitivity to BET inhibition in MPNST. Strikingly, genetic depletion of BRD4 protein levels synergistically sensitized MPNST cells to diverse BET inhibitors in culture and in vivo. CONCLUSIONS: Collectively, MPNST sensitivity to combination genetic and pharmacologic inhibition of BRD4 revealed the presence of a unique addiction to BRD4 in MPNST. Our discovery that a synthetic lethality exists between BET inhibition and reduced BRD4 protein levels nominates MPNST for the investigation of emerging therapeutic interventions such as proteolysis-targeting chimeras (PROTACs) that simultaneously target bromodomain activity and BET protein abundance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Bainha Neural/metabolismo , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Camundongos , Camundongos Knockout , Neoplasias de Bainha Neural/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 7(38): 61500-61508, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27517146

RESUMO

Deregulation of RAS signaling in Neurofibromatosis type 1 (NF1) results in the development of multiple neurofibromas, complex tumor of the peripheral nerves with no effective medical treatment. There is increasing evidences that neurofibroma initiates through loss of NF1 function in the Schwann cell lineage, followed by a cascade of interactions with other cell types in the surrounding tumor microenvironment. In NF1 patients, neurofibromas always develop along peripheral nerves and do not migrate to distant organs, including the central nervous system. In this study, we sought to identify the contributions of these peripheral nerves in neurofibroma formation. Using in vivo and in vitro three-dimensional (3D) culturing system, we show that peripheral nerves are absolutely required for neurofibroma tumorigenesis and report a novel 3D skin raft culture system for neurofibroma formation in vitro to decipher tumor pathogenesis. This interaction between neoplastic Schwann cells and their surrounding neural microenvironment has important implications for understanding early cellular events that dictate tumorigenesis. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in neurofibroma development and, therefore, viable therapeutic targets in neurofibroma therapy.


Assuntos
Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Neurofibromina 1/metabolismo , Neoplasias do Sistema Nervoso Periférico/patologia , Células de Schwann/patologia , Nervo Isquiático/patologia , Neuropatia Ciática/patologia , Microambiente Tumoral , Animais , Técnicas de Cultura de Células/métodos , Transformação Celular Neoplásica/patologia , Técnicas de Inativação de Genes , Genes da Neurofibromatose 1 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Neurofibromina 1/genética , Transdução de Sinais , Pele/citologia , Pele/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
New Phytol ; 207(1): 43-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25858142

RESUMO

Leaf hydraulic conductance (Kleaf ) quantifies the capacity of a leaf to transport liquid water and is a major constraint on light-saturated stomatal conductance (gs ) and photosynthetic rate (Amax ). Few studies have tested the plasticity of Kleaf and anatomy across growth light environments. These provided conflicting results. The Hawaiian lobeliads are an excellent system to examine plasticity, given the striking diversity in the light regimes they occupy, and their correspondingly wide range of Amax , allowing maximal carbon gain for success in given environments. We measured Kleaf , Amax , gs and leaf anatomical and structural traits, focusing on six species of lobeliads grown in a common garden under two irradiances (300/800 µmol photons m(-2)  s(-1) ). We tested hypotheses for light-induced plasticity in each trait based on expectations from optimality. Kleaf , Amax , and gs differed strongly among species. Sun/shade plasticity was observed in Kleaf , Amax, and numerous traits relating to lamina and xylem anatomy, venation, and composition, but gs was not plastic with growth irradiance. Species native to higher irradiance showed greater hydraulic plasticity. Our results demonstrate that a wide set of leaf hydraulic, stomatal, photosynthetic, anatomical, and structural traits tend to shift together during plasticity and adaptation to diverse light regimes, optimizing performance from low to high irradiance.


Assuntos
Campanulaceae/fisiologia , Fenômenos Ecológicos e Ambientais , Gases/metabolismo , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Feixe Vascular de Plantas/fisiologia , Biodiversidade , Campanulaceae/crescimento & desenvolvimento , Campanulaceae/efeitos da radiação , Geografia , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/efeitos da radiação , Característica Quantitativa Herdável , Chuva , Especificidade da Espécie , Água
6.
Cancer Cell ; 26(5): 695-706, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25446898

RESUMO

Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43(+) PLP(+) precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline neurofibroma model for preclinical drug screening to identify effective therapies. The identity of the tumor cell of origin and facility for isolation and expansion provides fertile ground for continued analysis to define factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients.


Assuntos
Neurofibroma Plexiforme/patologia , Neurofibromina 1/genética , Neoplasias do Sistema Nervoso Periférico/patologia , Animais , Carcinogênese/patologia , Linhagem da Célula , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Feminino , Proteína GAP-43/metabolismo , Gânglios Espinais/patologia , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/metabolismo , Neurofibroma Plexiforme/genética , Neoplasias do Sistema Nervoso Periférico/genética
7.
Cell Rep ; 6(1): 81-92, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24373973

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive sarcomas that develop sporadically or in neurofibromatosis type 1 (NF1) patients. There is no effective treatment for MPNSTs and they are typically fatal. To gain insights into MPNST pathogenesis, we utilized an MPNST mouse model that allowed us to study the evolution of these tumors at the transcriptome level. Strikingly, in MPNSTs we found upregulation of a chromatin regulator, Brd4, and show that BRD4 inhibition profoundly suppresses both growth and tumorigenesis. Our findings reveal roles for BET bromodomains in MPNST development and report a mechanism by which bromodomain inhibition induces apoptosis through induction of proapoptotic Bim, which may represent a paradigm shift in therapy for MPNST patients. Moreover, these findings indicate epigenetic mechanisms underlying the balance of anti- and proapoptotic molecules and that bromodomain inhibition can shift this balance in favor of cancer cell apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Genes da Neurofibromatose 1 , Proteínas de Membrana/metabolismo , Neoplasias de Bainha Neural/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2 , Carcinogênese , Proliferação de Células , Camundongos , Neoplasias de Bainha Neural/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Cancer Res ; 74(2): 586-97, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24285727

RESUMO

Neurofibromatosis type I (NF1) is an autosomal disorder that affects neural crest-derived tissues, leading to a wide spectrum of clinical presentations. Patients commonly present with plexiform neurofibromas, benign but debilitating growths that can transform into malignant peripheral nerve sheath tumors (MPNST), a main cause of mortality. Currently, surgery is the primary course of treatment for MPNST, but with the limitation that these tumors are highly invasive. Radiotherapy is another treatment option, but is undesirable because it can induce additional mutations. Patients with MPNST may also receive doxorubicin as therapy, but this DNA-intercalating agent has relatively low tumor specificity and limited efficacy. In this study, we exploited a robust genetically engineered mouse model of MPNST that recapitulates human NF1-associated MPNST to identify a novel small chemical compound that inhibits tumor cell growth. Compound 21 (Cpd21) inhibits growth of all available in vitro models of MPNST and human MPNST cell lines, while remaining nontoxic to normally dividing Schwann cells or mouse embryonic fibroblasts. We show that this compound delays the cell cycle and leads to cellular apoptosis. Moreover, Cpd21 can reduce MPNST burden in a mouse allograft model, underscoring the compound's potential as a novel chemotherapeutic agent.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias de Bainha Neural/tratamento farmacológico , Neoplasias de Bainha Neural/patologia , Animais , Ciclo Celular , Linhagem Celular Tumoral , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Feminino , Fibroblastos/metabolismo , Humanos , Substâncias Intercalantes/farmacologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Células de Schwann/citologia , Células de Schwann/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
J Phys Chem B ; 117(35): 10261-70, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23906438

RESUMO

We have studied how primitive hydrophobic interactions between two or more small nonpolar solutes are affected by the presence of surfaces. We show that the desolvation barriers present in the potential of mean force between the solutes in bulk water are significantly reduced near an extended hydrophobic surface. Correspondingly, the kinetics of hydrophobic contact formation and breakage are faster near a hydrophobic surface than near a hydrophilic surface or in the bulk. We propose that the reduction in the desolvation barrier is a consequence of the fact that water near extended hydrophobic surfaces is akin to that at a liquid-vapor interface and is easily displaced. We support this proposal with three independent observations. First, when small hydrophobic solutes are brought near a hydrophobic surface, they induce local dewetting, thereby facilitating the reduction of desolvation barriers. Second, our results and those of Patel et al. (Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 17678-17683) show that, whereas the association of small solutes in bulk water is driven by entropy, that near hydrophobic surfaces is driven by enthalpy, suggesting that the physics of interface deformation is important. Third, moving water away from its vapor-liquid coexistence, by applying hydrostatic pressure, leads to recovery of bulklike signatures (e.g., the presence of a desolvation barrier and an entropic driving force) in the association of solutes. These observations for simple solutes also translate to end-to-end contact formation in a model peptide with hydrophobic end groups, for which lowering of the desolvation barrier and acceleration of contact formation are observed near a hydrophobic surface. Our results suggest that extended hydrophobic surfaces, such as air-water or hydrocarbon-water surfaces, could serve as excellent platforms for catalyzing hydrophobically driven assembly.


Assuntos
Soluções/química , Ar , Hidrocarbonetos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Propriedades de Superfície , Termodinâmica , Água/química
10.
J Am Chem Soc ; 133(50): 20521-7, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22035164

RESUMO

While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure.


Assuntos
Talco , Adsorção , Entropia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA