Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hemasphere ; 8(5): e64, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756352

RESUMO

Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.

2.
Hematology Am Soc Hematol Educ Program ; 2023(1): 548-555, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066926

RESUMO

The inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of disorders caused by germline mutations in related genes and characterized by bone marrow failure (BMF), disease specific organ involvement, and, in most cases, predisposition to malignancy. Their distinction from immune marrow failure can often be challenging, particularly when presentations occur in adulthood or are atypical. A combination of functional (disease specific assays) and genetic testing is optimal in assessing all new BMF patients for an inherited etiology. However, genetic testing is costly and may not be available worldwide due to resource constraints; in such cases, clinical history, standard laboratory testing, and the use of algorithms can guide diagnosis. Interpretation of genetic results can be challenging and must reflect assessment of pathogenicity, inheritance pattern, clinical phenotype, and specimen type used. Due to the progressive use of genomics, new IBMFS continue to be identified, widening the spectrum of these disorders.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Adulto , Humanos , Medula Óssea , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Síndrome Congênita de Insuficiência da Medula Óssea , Transtornos da Insuficiência da Medula Óssea
3.
Cell Rep Med ; 4(8): 101160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586319

RESUMO

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe autoinflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1) gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activation of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is prominent in UBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are increased cytotoxicity and IFN-γ signaling in T cells. In VEXAS syndrome, both aberrant inflammation and myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.


Assuntos
Células-Tronco Hematopoéticas , Inflamação , Humanos , Proteólise , Diferenciação Celular , Inflamação/genética
4.
Haematologica ; 108(12): 3298-3307, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259612

RESUMO

Immunosuppressive treatment (IST) and hematopoietic cell transplant (HCT) are standard therapies for severe aplastic anemia (SAA). We report on conditional survival and standardized mortality ratios (SMR), which compare the mortality risk with the general population adjusted for age, gender, and race/ethnicity, in patients with SAA alive for at least 12 months after treatment with IST or HCT between 2000 and 2018. Given changes to treatment regimens and differences in length of follow-up, two treatment periods were defined a priori: 2000-2010 and 2011-2018. The SMR of patients treated during the period 2000-2010 and who survived one year were 3.50 (95% confidence interval [CI]: 2.62-4.58), 4.12 (95% CI: 3.20-5.21), and 8.62 (95% CI: 6.88-10.67) after IST, matched related donor HCT, and alternative donor HCT, respectively. For the period 2011-2018, the corresponding SMR were 2.89 (95% CI: 1.54-4.94), 3.12 (95% CI: 1.90-4.82), and 4.75 (95% CI: 3.45-6.38), respectively. For IST patients, their mortality risk decreased over time, and became comparable to the general population by five years. For patients who underwent HCT during 2000-2010 and 2011-2018, their mortality risk became comparable to the general population after ten years and after five years, respectively. Thus, 1-year survivors after IST or HCT can expect their longevity beyond five years to be comparable to that of the general US population.


Assuntos
Anemia Aplástica , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Transplante Homólogo
5.
Blood ; 142(3): 244-259, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084382

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Assuntos
Hematopoiese Clonal , Dermatite , Humanos , Hematopoiese Clonal/genética , Estudos Prospectivos , Estudos Retrospectivos , Mutação
6.
Am J Hematol ; 98(6): 932-939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021397

RESUMO

Immune severe aplastic anemia (SAA) is characterized by pancytopenia and immune-mediated bone marrow destruction. SAA may be treated with hematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). However, 30% of patients treated with IST relapse. We previously reported a clinical trial of alemtuzumab in which more than half of 25 relapsed SAA patients (56%) responded hematologically. Here, we present long-term results of a total of 42 patients. Participants with SAA who had previously completed antithymocyte globulin (ATG)-based IST, but had relapsed, were enrolled on this study. Alemtuzumab was administered intravenously (IV) (n = 28) or subcutaneously (SC) (n = 14). The primary endpoint was hematologic response at 6 months. Secondary endpoints included relapse, clonal evolution, and survival. This trial was registered at clinicaltrials.gov (NCT00195624). Patients were enrolled over 9 years, with median follow-up of 6 years. Median age was 32 years, with 57% being female. At 6 months, 18 patients (43%) achieved response; 15 (54%) of those who received IV compared with 3 (21%) who received SC therapy. Six patients (14%) had durable long-term response without need for subsequent AA-directed therapy or HSCT at last follow-up. Nine patients had clonal evolution, with high-risk evolution occurring in 6. Overall survival was 67% at median follow-up of 6 years. Prolonged iatrogenic immunosuppression was observed as long as 2 years after alemtuzumab administration. Alemtuzumab induces responses in relapsed SAA, some of which are durable long-term. However, immunosuppression can persist for years, requiring long-term monitoring.


Assuntos
Anemia Aplástica , Imunossupressores , Humanos , Feminino , Adulto , Masculino , Imunossupressores/efeitos adversos , Ciclosporina/uso terapêutico , Alemtuzumab/uso terapêutico , Anemia Aplástica/tratamento farmacológico , Resultado do Tratamento , Soro Antilinfocitário/uso terapêutico , Recidiva
7.
Blood ; 141(17): 2100-2113, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36542832

RESUMO

The choice to postpone treatment while awaiting genetic testing can result in significant delay in definitive therapies in patients with severe pancytopenia. Conversely, the misdiagnosis of inherited bone marrow failure (BMF) can expose patients to ineffectual and expensive therapies, toxic transplant conditioning regimens, and inappropriate use of an affected family member as a stem cell donor. To predict the likelihood of patients having acquired or inherited BMF, we developed a 2-step data-driven machine-learning model using 25 clinical and laboratory variables typically recorded at the initial clinical encounter. For model development, patients were labeled as having acquired or inherited BMF depending on their genomic data. Data sets were unbiasedly clustered, and an ensemble model was trained with cases from the largest cluster of a training cohort (n = 359) and validated with an independent cohort (n = 127). Cluster A, the largest group, was mostly immune or inherited aplastic anemia, whereas cluster B comprised underrepresented BMF phenotypes and was not included in the next step of data modeling because of a small sample size. The ensemble cluster A-specific model was accurate (89%) to predict BMF etiology, correctly predicting inherited and likely immune BMF in 79% and 92% of cases, respectively. Our model represents a practical guide for BMF diagnosis and highlights the importance of clinical and laboratory variables in the initial evaluation, particularly telomere length. Our tool can be potentially used by general hematologists and health care providers not specialized in BMF, and in under-resourced centers, to prioritize patients for genetic testing or for expeditious treatment.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Humanos , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Diagnóstico Diferencial , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Anemia Aplástica/terapia , Transtornos da Insuficiência da Medula Óssea/diagnóstico , Pancitopenia/diagnóstico
8.
Blood ; 141(1): 72-89, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130301

RESUMO

Immune aplastic anemia (AA) is a severe blood disease characterized by T-lymphocyte- mediated stem cell destruction. Hematopoietic stem cell transplantation and immunosuppression are effective, but they entail costs and risks, and are not always successful. The Janus kinase (JAK) 1/2 inhibitor ruxolitinib (RUX) suppresses cytotoxic T-cell activation and inhibits cytokine production in models of graft-versus-host disease. We tested RUX in murine immune AA for potential therapeutic benefit. After infusion of lymph node (LN) cells mismatched at the major histocompatibility complex [C67BL/6 (B6)⇒CByB6F1], RUX, administered as a food additive (Rux-chow), attenuated bone marrow hypoplasia, ameliorated peripheral blood pancytopenia, preserved hematopoietic progenitors, and prevented mortality, when used either prophylactically or therapeutically. RUX suppressed the infiltration, proliferation, and activation of effector T cells in the bone marrow and mitigated Fas-mediated apoptotic destruction of target hematopoietic cells. Similar effects were obtained when Rux-chow was fed to C.B10 mice in a minor histocompatibility antigen mismatched (B6⇒C.B10) AA model. RUX only modestly suppressed lymphoid and erythroid hematopoiesis in normal and irradiated CByB6F1 mice. Our data support clinical trials of JAK/STAT inhibitors in human AA and other immune bone marrow failure syndromes.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Camundongos , Humanos , Animais , Pancitopenia/patologia , Anemia Aplástica/patologia , Transtornos da Insuficiência da Medula Óssea/patologia , Medula Óssea/patologia , Doenças da Medula Óssea/patologia , Janus Quinase 1
9.
Semin Hematol ; 59(3): 156-166, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36115693

RESUMO

Somatic mutations have been increasingly identified as etiologic for many hematologic and autoinflammatory disorders. VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome and Erdheim-Chester disease (ECD), a type of histiocytosis, can be classified as inflammatory myeloid diseases, characterized by systemic inflammation and multi-organ disease with predisposition to myeloid malignancies. VEXAS is a novel disease caused by UBA1 mutations that was first discovered using a genotype-driven approach (genotype was used to identify patients with undiagnosed inflammatory diseases). Since the initial description, many VEXAS cases have been reported and disease phenotype is expanding rapidly. In contrast, ECD was first characterized in the 1930s based on patients' phenotype, and only recently found to be caused by recurrent somatic mutations in the MAPK pathway (traditional phenotype-driven approach). The discovery of these mutations and development of target therapies have revolutionized the treatment of patients with histiocytosis, particularly ECD. Here we discuss the impact of causal and associated somatic mutations in VEXAS and ECD at both clinical and molecular levels.


Assuntos
Doença de Erdheim-Chester , Doença de Erdheim-Chester/diagnóstico , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Humanos , Inflamação/patologia , Mutação
10.
Leukemia ; 36(9): 2328-2337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35896822

RESUMO

Predictors, genetic characteristics, and long-term outcomes of patients with SAA who clonally evolved after immunosuppressive therapy (IST) were assessed. SAA patients were treated with IST from 1989-2020. Clonal evolution was categorized as "high-risk" (overt myeloid neoplasm [meeting WHO criteria for dysplasia, MPN or acute leukemia] or isolated chromosome-7 abnormality/complex karyotype without dysplasia or overt myeloid neoplasia) or "low-risk" (non-7 or non-complex chromosome abnormalities without morphological evidence of dysplasia or myeloid neoplasia). Univariate and multivariate analysis using Fine-Gray competing risk regression model determined predictors. Long-term outcomes included relapse, overall survival (OS) and hematopoietic stem cell transplant (HSCT). Somatic mutations in myeloid cancer genes were assessed in evolvers and in 407 patients 6 months after IST. Of 663 SAA patients, 95 developed clonal evolution. Pre-treatment age >48 years and ANC > 0.87 × 109/L were strong predictors of high-risk evolution. OS was 37% in high-risk clonal evolution by 5 years compared to 94% in low-risk. High-risk patients who underwent HSCT had improved OS. Eltrombopag did not increase high-risk evolution. Splicing factors and RUNX1 somatic variants were detected exclusively at high-risk evolution; DNMT3A, BCOR/L1 and ASXL1 were present in both. RUNX1, splicing factors and ASXL1 somatic mutations detected at 6 months after IST predicted high-risk evolution.


Assuntos
Anemia Aplástica , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Evolução Clonal , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Terapia de Imunossupressão , Imunossupressores , Pessoa de Meia-Idade , Fatores de Processamento de RNA
11.
Semin Hematol ; 59(1): 21-29, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491055

RESUMO

Severe aplastic anemia, a disease characterized by pancytopenia and a hypocellular marrow, is treatable by either immunosuppressive therapy (IST) or hematopoietic stem cell transplant. Much is understood about the immune-mediated pathophysiology of AA now, but the inciting factor remains elusive. Many groups around the globe contributed to understanding the disease pathophysiology and optimizing the IST regimen. Horse antithymocyte globulin and cyclosporine, the initial IST regimen, achieved a hematologic response rate in about 60% to 65% of treated patients, with less than 10% achieving a complete count recovery. However, adding a thrombopoietin receptor agonist, eltrombopag (EPAG), to IST improved these response rates to nearly 80% and an unprecedented increase in complete response to almost 40%. The latest report indicates that a high-risk clonal evolution to myeloid malignancies is not increased with hematopoietic stem cell stimulation by adding EPAG in the front line setting. Despite the great success of IST and EPAG in improving early outcomes, relapse remains a problem. Further optimization of upfront therapy and treatment protocol is needed to prevent relapses and decrease clonal evolution rates for even better long-term results.


Assuntos
Anemia Aplástica , Anemia Aplástica/tratamento farmacológico , Células-Tronco Hematopoéticas , Humanos , Terapia de Imunossupressão , Recidiva , Indução de Remissão
13.
Blood ; 139(1): 34-43, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34525188

RESUMO

Patients with severe aplastic anemia (SAA) are either treated with bone marrow transplant (BMT) or immunosuppression (IST) depending on their age, comorbidities, and available donors. In 2017, our phase 2 trial reported improved hematologic responses with the addition of eltrombopag (EPAG) to standard IST for SAA when compared with a historical cohort treated with IST alone. However, the rates and characteristics of long-term complications, relapse, and clonal evolution, previously described in patients treated with IST alone, are not yet known with this new regimen, IST and EPAG. Patients were accrued from 2012 to 2020, with a total of 178 subjects included in this secondary endpoint analysis. With double the sample size and a much longer median follow-up (4 years) since the original publication in 2017, we report a cumulative relapse rate of 39% in responding patients who received cyclosporine (CSA) maintenance and clonal evolution of 15% in all treated patients at 4 years. Relapse occurred at distinct timepoints: after CSA dose reduction and EPAG discontinuation at 6 months, and after 2 years when CSA was discontinued. Most relapsed patients were retreated with therapeutic doses of CSA +/- EPAG, and two-thirds responded. Clonal evolution to a myeloid malignancy or chromosome 7 abnormality (high-risk) was noted in 5.7% of patients and conferred a poorer overall survival. Neither relapse nor high-risk evolution occurred at a higher rate than was observed in a historical comparator cohort, but the median time to both events was earlier in IST and EPAG treated patients. This trial was registered at www.clinicaltrials.gov as #NCT01623167.


Assuntos
Anemia Aplástica/tratamento farmacológico , Benzoatos/uso terapêutico , Ciclosporina/uso terapêutico , Hidrazinas/uso terapêutico , Imunossupressores/uso terapêutico , Pirazóis/uso terapêutico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
14.
Br J Haematol ; 196(4): 804-805, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729765
15.
Haematologica ; 107(8): 1815-1826, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587721

RESUMO

Although cell-free DNA (cfDNA) tests have emerged as a potential non-invasive alternative to bone marrow biopsies for monitoring clonal hematopoiesis in hematologic diseases, whether commercial cfDNA assays can be implemented for the detection and quantification of de novo clonal hematopoiesis in place of blood cells is uncertain. In this study, peripheral plasma cfDNA samples available from patients with aplastic anemia (n=25) or myelodysplastic syndromes (n=27) and a healthy cohort (n=107) were screened for somatic variants in genes related to hematologic malignancies using a Clinical Laboratory Improvement Amendments-certified panel. Results were further compared to DNA sequencing of matched blood cells. In reported results, 85% of healthy subjects, 36% of patients with aplastic anemia and 74% of patients with myelodysplastic syndromes were found to have somatic cfDNA variants, most frequently in DNMT3A, TET2, ASXL1 and SF3B1. However, concordance between cfDNA and blood cell findings was poor for the detection of clonal hematopoiesis when the allele frequency of the variants was <10%, which was mostly observed in the healthy and aplastic anemia cohorts but not in patients with myelodysplastic syndromes. After filtering data for potential artifacts due to low variant allele frequency and sequencing depth, the frequency of clonal hematopoiesis in cfDNA from healthy individuals and patients with aplastic anemia decreased to 52% and 20%, respectively. cfDNA and matched blood cells were not interchangeable for tracking changes in allele burdens as their agreement by Bland-Altman analysis was poor. A commercial cfDNA assay had good performance for de novo detection of clonal hematopoiesis in myelodysplastic syndromes, but showed no advantage over blood cells in diseases with low allele burdens or in healthy individuals.


Assuntos
Anemia Aplástica , Ácidos Nucleicos Livres , Síndromes Mielodisplásicas , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Ácidos Nucleicos Livres/genética , Hematopoiese Clonal/genética , Hematopoese/genética , Humanos , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética
16.
Semin Hematol ; 58(4): 239-246, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34802546

RESUMO

VEXAS syndrome has an unmet need for therapeutic interventions. Even if few data exist regarding the treatment of this newly described syndrome, different options can be proposed given the unique pathophysiological consequences of the clonal dominance of UBA1 mutated hematopoietic stem cells. To date, allogeneic transplantation is the only curative option, but many questions remain regarding the selection of eligible patients, the conditioning regimen or management of toxicities that may be unique to VEXAS patients. Alternatively, drugs used in myelodysplastic syndrome such as hypomethylating agents or lenalidomide are interesting candidates, which could theoretically have also an effect on the clone. Another strategy is to target the inflammatory cascade, by inhibiting proinflammatory cytokines (such as TNFα, IL1, IL6) or effector cells, for example with JAK inhibitors. Whatever the choice of treatment for VEXAS patients, supportive care is always needed to be considered to manage frequent complications such as cytopenia, thrombosis and infections. Finally, we discuss the challenges of the design of clinical trials for VEXAS patients, from inclusion criteria to clinical and biological endpoints of activity.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lenalidomida/uso terapêutico , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Transplante Homólogo
17.
Blood ; 138(26): 2799-2809, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34724566

RESUMO

Immune aplastic anemia (AA) features somatic loss of HLA class I allele expression on bone marrow cells, consistent with a mechanism of escape from T-cell-mediated destruction of hematopoietic stem and progenitor cells. The clinical significance of HLA abnormalities has not been well characterized. We examined the somatic loss of HLA class I alleles and correlated HLA loss and mutation-associated HLA genotypes with clinical presentation and outcomes after immunosuppressive therapy in 544 AA patients. HLA class I allele loss was detected in 92 (22%) of the 412 patients tested, in whom there were 393 somatic HLA gene mutations and 40 instances of loss of heterozygosity. Most frequently affected was HLA-B*14:02, followed by HLA-A*02:01, HLA-B*40:02, HLA-B*08:01, and HLA-B*07:02. HLA-B*14:02, HLA-B*40:02, and HLA-B*07:02 were also overrepresented in AA. High-risk clonal evolution was correlated with HLA loss, HLA-B*14:02 genotype, and older age, which yielded a valid prediction model. In 2 patients, we traced monosomy 7 clonal evolution from preexisting clones harboring somatic mutations in HLA-A*02:01 and HLA-B*40:02. Loss of HLA-B*40:02 correlated with higher blood counts. HLA-B*07:02 and HLA-B*40:01 genotypes and their loss correlated with late-onset of AA. Our results suggest the presence of specific immune mechanisms of molecular pathogenesis with clinical implications. HLA genotyping and screening for HLA loss may be of value in the management of immune AA. This study was registered at clinicaltrials.gov as NCT00001964, NCT00061360, NCT00195624, NCT00260689, NCT00944749, NCT01193283, and NCT01623167.


Assuntos
Anemia Aplástica/genética , Genes MHC Classe I , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Mutação , Adolescente , Adulto , Alelos , Anemia Aplástica/imunologia , Evolução Clonal , Feminino , Deleção de Genes , Expressão Gênica , Antígenos HLA-A/imunologia , Antígenos HLA-B/imunologia , Humanos , Imunidade , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Blood Adv ; 5(16): 3203-3215, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427584

RESUMO

Somatic mutations in UBA1 involving hematopoietic stem and myeloid cells have been reported in patients with the newly defined VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Here, we report clinical hematologic manifestations and unique bone marrow (BM) features in 16 patients with VEXAS. All patients were male and had a history of severe autoinflammatory and rheumatologic manifestations and a somatic UBA1 mutation (p.Met41). Ten patients had hematologic disorders: myelodysplastic syndrome (MDS; 6 of 16), multiple myeloma (2 of 16), monoclonal gammopathy of undetermined significance (2 of 16), and monoclonal B-cell lymphocytosis (2 of 16), and a few of those patients had 2 co-existing clonal processes. Although macrocytic anemia (100%) and lymphopenia (80%) were prevalent in all patients with VEXAS, thrombocytopenia and neutropenia were more common in patients with progression to MDS. All BMs in VEXAS patients had prominent cytoplasmic vacuoles in myeloid and erythroid precursors. In addition, most BMs were hypercellular with myeloid hyperplasia, erythroid hypoplasia, and varying degrees of dysplasia. All patients diagnosed with MDS were lower risk (low blast count, very good to intermediate cytogenetics) according to standard prognostic scoring with no known progression to leukemia. In addition, 10 of 16 patients had thrombotic events, including venous thromboembolism and arterial stroke. Although VEXAS presents symptomatically as a rheumatologic disease, morbidity and mortality are associated with progression to hematologic disease. Given the increased risk of developing MDS and multiple myeloma, surveillance for disease progression is important.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Síndromes Mielodisplásicas , Medula Óssea , Humanos , Masculino , Mutação
19.
Best Pract Res Clin Haematol ; 34(2): 101276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34404528

RESUMO

Acquired bone marrow failure (BMF) syndromes comprise a diverse group of diseases with variable clinical manifestations but overlapping features of immune activation, resulting in haematopoietic stem and progenitor cells (HSPC) damage and destruction. This review focuses on clinical presentation, pathophysiology, and treatment of four BMF: acquired aplastic anaemia, large granular lymphocytic leukaemia, paroxysmal nocturnal haemoglobinuria, and hypoplastic myelodysplastic syndrome. Autoantigens are speculated to be the inciting event that result in immune activation in all of these diseases, but specific pathogenic antigens have not been identified. Oligoclonal cytotoxic T cell expansion and an active role of proinflammatory cytokines, primarily interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), are two main contributors to HSPC growth inhibition and apoptosis in BMF. Emerging evidence also suggests involvement of the innate immune system.


Assuntos
Anemia Aplástica , Hemoglobinúria Paroxística , Anemia Aplástica/terapia , Medula Óssea , Transplante de Medula Óssea , Células-Tronco Hematopoéticas , Hemoglobinúria Paroxística/terapia , Humanos
20.
Blood ; 137(26): 3591-3594, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971000

RESUMO

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease of adulthood caused by somatic mutations in UBA1 in hematopoietic progenitor cells. Patients develop inflammatory and hematologic symptoms. Myeloid-driven autoinflammation and progressive bone marrow failure lead to substantial morbidity and mortality. Effective medical treatments need to be identified. Reports in the current issue of Blood describe novel UBA1 genetic variants, treatment options, and insight into disease pathophysiology. VEXAS syndrome represents a prototype for a new class of diseases.


Assuntos
Genes Ligados ao Cromossomo X , Doenças Genéticas Inatas , Mutação , Transtornos Mieloproliferativos , Enzimas Ativadoras de Ubiquitina/genética , Células Eritroides/enzimologia , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Humanos , Masculino , Células Mieloides/enzimologia , Transtornos Mieloproliferativos/diagnóstico por imagem , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA