Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32679526

RESUMO

Tamoxifen (TAM) is the choice of a drug approved by the Food and Drug Administration (FDA) for the treatment of estrogen-positive receptor (ER+) breast cancer. Sulphoraphane (SFN), a natural plant antioxidant compound, also acts on estrogen-positive breast cancer receptor. Thus, a combination of TAM with SFN is preferred as it helps to minimize the drug-related toxicity and increases the therapeutic efficacy by providing synergistic anticancer effects of both drugs. In the present study, a new simple, sensitive, precise, and selective UPLC-MS/MS method was developed for the simultaneous quantification of tamoxifen and sulphoraphane using propranolol as an internal standard (IS) in rat plasma. Chromatographic separation was achieved on reverse phase Acquity UPLC BEH C18 column (50 mm × 2.1 mm, i.d., 1.7 µm) with an isocratic mobile phase composed of solvent A (0.1% formic acid in acetonitrile) and B (0.1% formic acid in water) (80:20, v/v) at a flow-rate of 0.4 mL/min. The detection and quantification of analytes was performed on Waters ZsprayTM Xevo TQD using selected-ion monitoring operated under a positive electrospray ionization mode. The transitions were m/z = 372.0 [M+H]+ → 71.92 for tamoxifen, m/z = 177.9 [M+H]+ → 113.9 for sulphoraphane and m/z = 260.3 [M+H]+ → 116.1 for propranolol. The method was linear over the concentration range of 8-500 ng/mL (r2 = 0.9996) for tamoxifen, 30-2000 ng/mL (r2 = 0.9998) for sulphoraphane with insignificant matrix effect and high extraction recovery on spiked quality control (QC) samples. The intra- and inter-batch precisions and accuracy were within the acceptable limits, and both the analytes were found to be stable throughout the short term, long term and freeze thaw stability studies. The validated method was successfully applied for the simultaneous estimation of TAM and SFN in an oral pharmacokinetic study in female Wistar rats. This developed UPLC-MS/MS method could be a valuable tool for future pharmacokinetic interaction, therapeutic drug monitoring and pharmacokinetic characterization of novel formulations.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isotiocianatos/sangue , Sulfóxidos/sangue , Tamoxifeno/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Feminino , Isotiocianatos/química , Isotiocianatos/farmacocinética , Modelos Lineares , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sulfóxidos/química , Sulfóxidos/farmacocinética , Tamoxifeno/química , Tamoxifeno/farmacocinética
2.
J Biol Chem ; 293(50): 19263-19276, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30337371

RESUMO

Preoperative progesterone intervention has been shown to confer a survival benefit to breast cancer patients independently of their progesterone receptor (PR) status. This observation raises the question how progesterone affects the outcome of PR-negative cancer. Here, using microarray and RNA-Seq-based gene expression profiling and ChIP-Seq analyses of breast cancer cells, we observed that the serum- and glucocorticoid-regulated kinase gene (SGK1) and the tumor metastasis-suppressor gene N-Myc downstream regulated gene 1 (NDRG1) are up-regulated and that the microRNAs miR-29a and miR-101-1 targeting the 3'-UTR of SGK1 are down-regulated in response to progesterone. We further demonstrate a dual-phase transcriptional and post-transcriptional regulation of SGK1 in response to progesterone, leading to an up-regulation of NDRG1 that is mediated by a set of genes regulated by the transcription factor AP-1. We found that NDRG1, in turn, inactivates a set of kinases, impeding the invasion and migration of breast cancer cells. In summary, we propose a model for the mode of action of progesterone in breast cancer. This model helps decipher the molecular basis of observations in a randomized clinical trial of the effect of progesterone on breast cancer and has therefore the potential to improve the prognosis of breast cancer patients receiving preoperative progesterone treatment.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Progesterona/farmacologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Progesterona/metabolismo , Fator de Transcrição AP-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo
3.
Cancer Biol Ther ; 18(10): 801-805, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28876975

RESUMO

OBJECTIVE: Hormonal therapy is an important component of first line of treatment for breast cancer. Response to hormonal therapy is influenced by the progesterone receptor (PR)-status of breast cancer patients. However as an early effect, exposure to progesterone decreases expression of PR in breast cancer cells. An understanding of the mechanism underlying down-regulation of PR could help improve response to hormonal therapy. METHODS: We performed small RNA sequencing of breast cancer cells for identification of microRNAs targeting PR in response to progesterone treatment. Biochemical approaches were used to validate the findings in breast cancer cells. RESULTS: Analysis of small RNA sequencing of four breast cancer cell lines treated with progesterone revealed an up-regulation of miR-129-2 independent of the PR status of the cells. We show that miR-129-2 targets 3'UTR of PR to down-regulate its expression. Furthermore, inhibition of miR-129-2 expression rescues the down-regulation of PR in breast cancer cells. Also, the expression levels of miR-129-2 was observed to be elevated in patients with low expression of PR in the TCGA cohort (n = 359). CONCLUSION: miR-129-2 mediates down-regulation of PR in breast cancer cells in response to progesterone, while anti-miR-129-2 could potentiate PR expression levels among patients with inadequate PR levels. Thus, modulation of activity of miR-129-2 could stabilize PR expression and potentially improve response to hormonal therapy under adjuvant or neo-adjuvant settings.


Assuntos
Neoplasias da Mama/tratamento farmacológico , MicroRNAs/metabolismo , Progesterona/farmacologia , Progestinas/farmacologia , Receptores de Progesterona/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Conjuntos de Dados como Assunto , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/antagonistas & inibidores , Progesterona/uso terapêutico , Progestinas/uso terapêutico , Análise de Sequência de RNA
4.
F1000Res ; 4: 160, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27127615

RESUMO

Molecular diagnostics has changed the way lung cancer patients are treated worldwide. Of several different testing methods available, PCR followed by directed sequencing and amplification refractory mutation system (ARMS) are the two most commonly used diagnostic methods worldwide to detect mutations at  KRAS exon 2 and  EGFR kinase domain exons 18-21 in lung cancer. Compared to ARMS, the PCR followed by directed sequencing approach is relatively inexpensive but more cumbersome to perform. Moreover, with a limiting amount of genomic DNA from clinical formalin-fixed, paraffin-embedded (FFPE) specimens or fine biopsies of lung tumors, multiple rounds of PCR and sequencing reactions often get challenging. Here, we report a novel and cost-effective single multiplex-PCR based method, CRE (for  Co-amplification of five  K RAS and  E GFR exons), followed by concatenation of the PCR product as a single linear fragment for direct sequencing. CRE is a robust protocol that can be adapted for routine use in clinical diagnostics with reduced variability, cost and turnaround time requiring a minimal amount of template DNA extracted from FFPE or fresh frozen tumor samples. As a proof of principle, CRE is able to detect the activating  EGFR L858R and T790M  EGFR mutations in lung cancer cell line and primary tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA