Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1620, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238404

RESUMO

The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.


Assuntos
Poli-Hidroxialcanoatos , Polissorbatos , Poli-Hidroxialcanoatos/química , Biopolímeros , Aminoácidos , Plásticos
2.
Antioxidants (Basel) ; 12(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37507952

RESUMO

Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.

3.
Biomedicines ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37371705

RESUMO

Cancer is a significant challenge for effective treatment due to its complex mechanism, different progressing stages, and lack of adequate procedures for screening and identification. Pancreatic cancer is typically identified in its advanced progression phase with a low survival of ~5 years. Among cancers, pancreatic cancer is also considered a high mortality-causing casualty over other accidental or disease-based mortality, and it is ranked seventh among all mortality-associated cancers globally. Henceforth, developing diagnostic procedures for its early detection, understanding pancreatic cancer-linked mechanisms, and various therapeutic strategies are crucial. This review describes the recent development in pancreatic cancer progression, mechanisms, and therapeutic approaches, including molecular techniques and biomedicines for effectively treating cancer.

4.
3 Biotech ; 13(6): 211, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251731

RESUMO

Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.

5.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364411

RESUMO

Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Humanos , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA