Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 112(1-3): 40-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18824103

RESUMO

Selective estrogen receptor modulators (SERMs) have the potential to treat estrogen sensitive diseases such as uterine leiomyoma and endometriosis, which are prevalent in reproductive age women. However, SERMs also increase the risk of developing ovarian cysts in this population, a phenomenon that is not seen in postmenopausal women. It is believed that current SERMs partially block estradiol's ability to downregulate gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus thereby interfering with estradiol's negative feedback, leading to increased ovarian stimulation by gonadotropins, and cyst formation. It has been postulated that a SERM with poor brain exposure would have less negative effect on the HPO axis, therefore reducing the risk of developing ovarian cysts. In order to test this hypothesis, we identified an early marker of SERM-dependent ovarian effects: upregulation of Cyp17a1 mRNA. SERMs known to cause ovarian cysts upregulate Cyp17a1 after only 4 days of dosing and suppression of the HPO axis prevented this regulation, indicating that ovarian expression of Cyp17a1 was secondary to SERM's effect on the brain. We then characterized three SERMs with similar binding affinity and antagonist effects on the uterus for their relative brain/plasma exposure and ovarian effects. We found that the degree of brain exposure correlated very well with Cyp17a1 expression.


Assuntos
Cistos Ovarianos/metabolismo , Ovário/enzimologia , Moduladores Seletivos de Receptor Estrogênico/farmacocinética , Esteroide 17-alfa-Hidroxilase/biossíntese , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Feminino , Naftalenos/administração & dosagem , Naftalenos/efeitos adversos , Naftalenos/farmacocinética , Cistos Ovarianos/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Cloridrato de Raloxifeno/administração & dosagem , Cloridrato de Raloxifeno/efeitos adversos , Cloridrato de Raloxifeno/farmacocinética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos , Regulação para Cima
2.
J Pharmacol Toxicol Methods ; 56(1): 67-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17391989

RESUMO

INTRODUCTION: Tumor necrosis factor-alpha (TNFalpha) participates in many inflammatory processes. TNFalpha modulators show beneficial effects for the treatment of many diseases including rheumatoid arthritis. The purpose of this study was to validate a rat pharmacokinetic/pharmacodynamic (PK/PD) model for rapid assessment of drug candidates that intended to interrupt TNFalpha synthesis or release. METHODS: Rats received intravenous (IV) or oral administrations of test article or dose vehicle, followed by LPS challenge. Plasma levels of test article and TNFalpha were determined. The areas under the concentration-time curves (AUC(drug) and AUC(TNFalpha)) were calculated. The overall percentage of inhibition on TNFalpha release in vivo was calculated by comparing AUC(TNFalpha) of the test article treated group against that for the vehicle control group. RESULTS: The dosing vehicles tested in this study did not increase plasma TNFalpha level. At IV dose of up to 100 microg/kg, LPS did not alter the pharmacokinetics of the compound tested. Using a selective TNFalpha converting enzyme (TACE) inhibitor as model compound, this PK/PD model demonstrated its ability to correlate plasma test article concentration with its biological activity of lowering the LPS-induced TNFalpha plasma levels in vivo. DISCUSSION: A rat PK/PD model for evaluation of the effect of drug candidates on LPS-induced TNFalpha synthesis and/or release has been investigated. This model provides integrated information on pharmacokinetics and in vivo potency of the test articles.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Proteína ADAM17 , Animais , Feminino , Humanos , Modelos Biológicos , Ratos , Ratos Endogâmicos Lew , Sulfonamidas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA