Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507656

RESUMO

BACKGROUND AND OBJECTIVES: Antibodies (Abs) specific for the low-density lipoprotein receptor-related protein 4 (LRP4) occur in up to 5% of patients with myasthenia gravis (MG). The objective of this study was to profile LRP4-Ab effector actions. METHODS: We evaluated the efficacy of LRP4-specific compared with AChR-specific IgG to induce Ab-dependent cellular phagocytosis (ADCP), Ab-dependent cellular cytotoxicity (ADCC), and Ab-dependent complement deposition (ADCD). Functional features were additionally assessed in an independent AChR-Ab+ MG cohort. Levels of circulating activated complement proteins and frequency of Fc glycovariants were quantified and compared with demographically matched 19 healthy controls. RESULTS: Effector actions that required binding of Fc domains to cellular FcRs such as ADCC and ADCP were detectable for both LRP4-specific and AChR-specific Abs. In contrast to AChR-Abs, LRP4-binding Abs showed poor efficacy in inducing complement deposition. Levels of circulating activated complement proteins were not substantially increased in LRP4-Ab-positive MG. Frequency of IgG glycovariants carrying 2 sialic acid residues, indicative for anti-inflammatory IgG activity, was decreased in patients with LRP4-Ab-positive MG. DISCUSSION: LRP4-Abs are more effective in inducing cellular FcR-mediated effector mechanisms than Ab-dependent complement activation. Their functional signature is different from AChR-specific Abs.


Assuntos
Miastenia Gravis , Receptores Colinérgicos , Humanos , Autoanticorpos , Proteínas Relacionadas a Receptor de LDL , Receptores Proteína Tirosina Quinases , Imunoglobulina G , Proteínas do Sistema Complemento
2.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310381

RESUMO

Positively selected germinal center B cells (GCBC) can either resume proliferation and somatic hypermutation or differentiate. The mechanisms dictating these alternative cell fates are incompletely understood. We show that the protein arginine methyltransferase 1 (Prmt1) is upregulated in murine GCBC by Myc and mTORC-dependent signaling after positive selection. Deleting Prmt1 in activated B cells compromises antibody affinity maturation by hampering proliferation and GCBC light zone to dark zone cycling. Prmt1 deficiency also results in enhanced memory B cell generation and plasma cell differentiation, albeit the quality of these cells is compromised by the GCBC defects. We further demonstrate that Prmt1 intrinsically limits plasma cell differentiation, a function co-opted by B cell lymphoma (BCL) cells. Consistently, PRMT1 expression in BCL correlates with poor disease outcome, depends on MYC and mTORC1 activity, is required for cell proliferation, and prevents differentiation. Collectively, these data identify PRMT1 as a determinant of normal and cancerous mature B cell proliferation and differentiation balance.


Assuntos
Linfócitos B , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Afinidade de Anticorpos , Diferenciação Celular , Centro Germinativo , Proteína-Arginina N-Metiltransferases/genética , Proliferação de Células
4.
NAR Cancer ; 2(3): zcaa019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33554121

RESUMO

In B lymphocytes, the uracil N-glycosylase (UNG) excises genomic uracils made by activation-induced deaminase (AID), thus underpinning antibody gene diversification and oncogenic chromosomal translocations, but also initiating faithful DNA repair. Ung-/- mice develop B-cell lymphoma (BCL). However, since UNG has anti- and pro-oncogenic activities, its tumor suppressor relevance is unclear. Moreover, how the constant DNA damage and repair caused by the AID and UNG interplay affects B-cell fitness and thereby the dynamics of cell populations in vivo is unknown. Here, we show that UNG specifically protects the fitness of germinal center B cells, which express AID, and not of any other B-cell subset, coincident with AID-induced telomere damage activating p53-dependent checkpoints. Consistent with AID expression being detrimental in UNG-deficient B cells, Ung-/- mice develop BCL originating from activated B cells but lose AID expression in the established tumor. Accordingly, we find that UNG is rarely lost in human BCL. The fitness preservation activity of UNG contingent to AID expression was confirmed in a B-cell leukemia model. Hence, UNG, typically considered a tumor suppressor, acquires tumor-enabling activity in cancer cell populations that express AID by protecting cell fitness.

5.
Nat Commun ; 10(1): 22, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604754

RESUMO

Mechanisms regulating B cell development, activation, education in the germinal center (GC) and differentiation, underpin the humoral immune response. Protein arginine methyltransferase 5 (Prmt5), which catalyzes most symmetric dimethyl arginine protein modifications, is overexpressed in B cell lymphomas but its function in normal B cells is poorly defined. Here we show that Prmt5 is necessary for antibody responses and has essential but distinct functions in all proliferative B cell stages in mice. Prmt5 is necessary for B cell development by preventing p53-dependent and p53-independent blocks in Pro-B and Pre-B cells, respectively. By contrast, Prmt5 protects, via p53-independent pathways, mature B cells from apoptosis during activation, promotes GC expansion, and counters plasma cell differentiation. Phenotypic and RNA-seq data indicate that Prmt5 regulates GC light zone B cell fate by regulating transcriptional programs, achieved in part by ensuring RNA splicing fidelity. Our results establish Prmt5 as an essential regulator of B cell biology.


Assuntos
Linfócitos B/fisiologia , Proliferação de Células/fisiologia , Centro Germinativo/fisiologia , Imunidade Humoral/fisiologia , Proteína-Arginina N-Metiltransferases/fisiologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Centro Germinativo/citologia , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/fisiologia , Trichostrongyloidea/imunologia , Tricostrongiloidíase/imunologia , Tricostrongiloidíase/parasitologia , Proteína Supressora de Tumor p53/metabolismo
6.
Nat Commun ; 9(1): 1248, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593215

RESUMO

Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus underpinning antibody responses. AID mutates a few hundred other loci, but most AID-occupied genes are spared. The mechanisms underlying productive deamination versus non-productive AID targeting are unclear. Here we show that three clustered arginine residues define a functional AID domain required for SHM, CSR, and off-target activity in B cells without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and mutants with single amino acid replacements in this domain broadly associate with Spt5 and chromatin and occupy the promoter of AID target genes. However, mutant AID fails to occupy the corresponding gene bodies and loses association with transcription elongation factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing mechanism, which couples AID to transcription elongation.


Assuntos
Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , Switching de Imunoglobulina , Mutagênese , Elongação da Transcrição Genética , Animais , Arginina/química , Linhagem Celular Tumoral , Cromatina/química , DNA/química , Desaminação , Escherichia coli/metabolismo , Genes de Imunoglobulinas , Humanos , Imunoglobulinas/química , Lipopolissacarídeos/química , Camundongos , Microscopia Confocal , Mutação , Domínios Proteicos , Hipermutação Somática de Imunoglobulina , Transcrição Gênica
7.
Nucleic Acids Res ; 44(22): 10879-10897, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27924011

RESUMO

APRIN (PDS5 cohesin associated factor B) interacts with both the cohesin complex and the BRCA2 tumor suppressor. How APRIN influences cohesion and DNA repair processes is not well understood. Here, we show that APRIN is recruited to DNA damage sites. We find that APRIN interacts directly with RAD51, PALB2 and BRCA2. APRIN stimulates RAD51-mediated DNA strand invasion. APRIN also binds DNA with an affinity for D-loop structures and single-strand (ss) DNA. APRIN is a new homologous recombination (HR) mediator as it counteracts the RPA inhibitory effect on RAD51 loading to ssDNA. We show that APRIN strongly improves the annealing of complementary-strand DNA and that it can stimulate this process in synergy with BRCA2. Unlike cohesin constituents, its depletion has no impact on class switch recombination, supporting a specific role for this protein in HR. Furthermore, we show that low APRIN expression levels correlate with a better survival in ovarian cancer patients and that APRIN depletion sensitizes cells to the PARP inhibitor Olaparib in xenografted zebrafish. Our findings establish APRIN as an important and specific actor of HR, with cohesin-independent functions.


Assuntos
Biomarcadores Tumorais/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias Ovarianas/metabolismo , Lesões Intraepiteliais Escamosas Cervicais/metabolismo , Fatores de Transcrição/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Proteína BRCA2/metabolismo , Benzimidazóis/farmacologia , Biomarcadores Tumorais/química , Linhagem Celular Tumoral , Dano ao DNA , Proteínas de Ligação a DNA/química , Resistencia a Medicamentos Antineoplásicos , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Transporte Proteico , Curva ROC , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Lesões Intraepiteliais Escamosas Cervicais/diagnóstico , Lesões Intraepiteliais Escamosas Cervicais/tratamento farmacológico , Lesões Intraepiteliais Escamosas Cervicais/mortalidade , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
J Immunol ; 191(11): 5751-63, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24146042

RESUMO

Classical nonhomologous end-joining (C-NHEJ) and alternative end-joining (A-EJ) are the main DNA double-strand break (DSB) repair pathways when a sister chromatid is not available. However, it is not clear how one pathway is chosen over the other to process a given DSB. To address this question, we studied in mouse splenic B cells and CH12F3 cells how C-NHEJ and A-EJ repair DSBs initiated by the activation-induced deaminase during IgH (Igh) class-switch recombination (CSR). We show in this study that lowering the deamination density at the Igh locus increases DSB resolution by microhomology-mediated repair while decreasing C-NHEJ activity. This process occurs without affecting 53BP1 and γH2AX levels during CSR. Mechanistically, lowering deamination density increases exonuclease I recruitment and single-stranded DNA at the Igh locus and promotes C-terminal binding protein interacting protein and MSH2-dependent DSB repair during CSR. Indeed, reducing activation-induced deaminase levels increases CSR efficiency in C-NHEJ-defective cells, suggesting enhanced use of an A-EJ pathway. Our results establish a mechanism by which C-NHEJ and this C-terminal binding protein interacting protein/MSH2-dependent pathway that relies on microhomology can act concurrently but independently to repair different types of DSBs and reveal that the density of DNA lesions influences the choice of DSB repair pathway during CSR.


Assuntos
Linfócitos B/imunologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exodesoxirribonucleases/metabolismo , Switching de Imunoglobulina/genética , Oxirredutases do Álcool/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Citidina Desaminase/genética , Proteínas de Ligação a DNA/metabolismo , Desaminação/genética , Histonas/metabolismo , Camundongos , Camundongos Knockout , Proteína 2 Homóloga a MutS/metabolismo , Ligação Proteica , Transporte Proteico , Reparo de DNA por Recombinação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
J Exp Med ; 207(12): 2751-65, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21041454

RESUMO

Activation-induced deaminase (AID) is the mutator enzyme that initiates somatic hypermutation and isotype switching of the antibody genes in B lymphocytes. Undesired byproducts of AID function are oncogenic mutations. AID expression levels seem to correlate with the extent of its physiological and pathological functions. In this study, we identify AID as a novel Hsp90 (heat shock protein 90 kD) client. We find that cytoplasmic AID is in a dynamic equilibrium regulated by Hsp90. Hsp90 stabilizes cytoplasmic AID, as specific Hsp90 inhibition leads to cytoplasmic polyubiquitination and proteasomal degradation of AID. Consequently, Hsp90 inhibition results in a proportional reduction in antibody gene diversification and off-target mutation. This evolutionarily conserved regulatory mechanism determines the functional steady-state levels of AID in normal B cells and B cell lymphoma lines. Thus, Hsp90 assists AID-mediated antibody diversification by stabilizing AID. Hsp90 inhibition provides the first pharmacological means to down-regulate AID expression and activity, which could be relevant for therapy of some lymphomas and leukemias.


Assuntos
Diversidade de Anticorpos , Citidina Desaminase/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Animais , Benzoquinonas/farmacologia , Estabilidade Enzimática , Proteínas de Fusão bcr-abl/análise , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células HeLa , Humanos , Switching de Imunoglobulina , Lactamas Macrocíclicas/farmacologia , Camundongos , Ubiquitina-Proteína Ligases/fisiologia
10.
Proc Natl Acad Sci U S A ; 105(9): 3449-54, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18296642

RESUMO

Neural tube defects (NTDs) are very frequent congenital abnormalities in humans. Recently, we have documented independent association of Vangl1 and Vangl2 gene mutations with NTDs. In the Looptail mouse, homozygosity (but not heterozygosity) for loss-of-function alleles at Vangl2 causes the severe NTD craniorachischisis, whereas heterozygosity for mutant variants of VANGL1 is associated with NTDs in a human cohort of sporadic and familial cases. To understand the role of Vangl1 in normal development, we created a mouse mutant with an inactivating mutation at Vangl1 (Vangl1(gt)). Vangl1 shows a dynamic pattern of expression in the developing neural tube and notochord at the time of neural tube closure. Vangl1(gt/+) heterozygotes and Vangl1(gt/gt) homozygotes are viable and fertile, although Vangl1(gt/gt) display subtle alterations in polarity of inner hair cells of the cochlea. Remarkably, and as opposed to healthy Vangl1(gt/+) and Vangl2(lp/+) heterozygotes, Vangl1(gt/+);Vangl2(lp/+) double heterozygotes show profound developmental defects that include severe craniorachischisis, inner ear defects (disorganization of the stereociliary bundles of hair cells of the organ of Corti), and cardiac abnormality (aberrant right subclavian artery). These results show that genetic interaction between Vangl1 and Vangl2 genes causes neural tube defects and raise the possibility that interaction between individual Vangl genes and other genetic loci and/or environmental factors may additionally contribute to the etiology of NTDs.


Assuntos
Proteínas de Transporte/genética , Heterozigoto , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Defeitos do Tubo Neural/genética , Animais , Cardiopatias , Doenças do Labirinto , Camundongos , Camundongos Mutantes , Camundongos Mutantes Neurológicos , Defeitos do Tubo Neural/etiologia , Notocorda , Fenótipo
11.
Am J Physiol Renal Physiol ; 293(2): F494-500, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17494089

RESUMO

The canonical WNT signaling pathway plays a crucial role in patterning of the embryo during development, but little is known about the specific developmental events which are under WNT control. To understand more about how the WNT pathway orchestrates mammalian organogenesis, we studied the canonical beta-catenin-mediated WNT signaling pathway in kidneys of mice bearing a beta-catenin-responsive TCF/betaGal reporter transgene. In metanephric kidney, intense canonical WNT signaling was evident in epithelia of the branching ureteric bud and in nephrogenic mesenchyme during its transition into renal tubules. WNT signaling activity is rapidly downregulated in maturing nephrons and becomes undetectable in postnatal kidney. Sites of TCF/betaGal activity are in proximity to the known sites of renal WNT2b and WNT4 expression, and these WNTs stimulate TCF reporter activity in kidney cell lines derived from ureteric bud and metanephric mesenchyme lineages. When fetal kidney explants from HoxB7/GFP mice were exposed to the canonical WNT signaling pathway inhibitor, Dickkopf-1, arborization of the ureteric bud was significantly reduced. We conclude that restricted zones of intense canonical WNT signaling drive branching nephrogenesis in fetal kidney.


Assuntos
Rim/embriologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , Animais , Linhagem Celular , DNA Complementar/biossíntese , DNA Complementar/genética , Regulação para Baixo/fisiologia , Células Epiteliais/fisiologia , Genes Reporter/genética , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/metabolismo , Túbulos Renais Coletores/metabolismo , Óperon Lac/genética , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Fatores do Domínio POU/genética , Transfecção , Ureter/embriologia , beta Catenina/metabolismo
12.
Gene Expr Patterns ; 7(3): 346-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16962386

RESUMO

Loop-tail (Lp) mice show a very severe neural tube defect, craniorachischisis, which is caused by mis-sense mutations in the Vangl2 gene. The membrane protein Vangl2 belongs to a highly conserved group of proteins that regulate planar polarity in certain epithelia, and that are also important for convergent extension movements during gastrulation and neurulation. A specific anti-Vangl2 antiserum was produced and used to examine the tissue, cell type, and sub-cellular localization of Vangl2 during embryogenesis. Vangl2 protein is expressed at high levels in the neural tube and shows a dynamic expression profile during neurulation. After neural tube closure, robust Vangl2 staining is detected in several neural and neurosensory tissues, including cerebral cortex, dorsal root ganglia, olfactory epithelium, retina, mechanosensory hair cells of the cochlea, and optic nerve. Vangl2 is also expressed during organogenesis in a number of tubular epithelia, including the bronchial tree, intestinal crypt/villus axis, and renal tubular segments derived from ureteric bud and from metanephric mesenchyme. Examination of Vangl2 localization in the neural tubes and cochleas of the normal and Lp/Lp embryos shows disruption of normal membrane localization of Vangl2 in independent alleles at Lp (Lp, Lp(m1Jus)) as well as overall decrease in the expression level.


Assuntos
Sistema Nervoso Central/embriologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Animais , Linhagem Celular , Sistema Nervoso Central/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes Neurológicos/genética , Proteínas do Tecido Nervoso/análise , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Organogênese/genética , Fenótipo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA