Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurointerv Surg ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238007

RESUMO

Intraorbital arteriovenous fistulas (IOAVFs) are rare vascular pathologies that may be effectively treated with direct puncture (DP) of the venous supply and may offer a definitive and safe cure when done under ultrasound or stereotactic guidance. Here we present three new cases of DP treatment of IOAVFs, indications for safe use, and their potential complications in comparison to the existing literature on DP and other modalities.Three patients with IOAVFs were treated with DP with ultrasound guidance, stereotactic guidance, and fluoroscopy. Final digital subtraction angiography (DSA) revealed complete cure of IOAVFs. A literature review via PubMed was performed on treatments of IOAVFs since 1978.All three cases of DP resulted in successful cures with 2/3 cases resulting in complications from orbital hematoma formation. 49 total treatments including the cases herein have been documented. DP treatment constituted 5/49, conservative management 17/49, transarterial 8/49, transvenous 18/49, and surgical 3/49. Some cases received more than one mode of treatment. Transarterial and surgical managements were found to have higher complication rates than transvenous and DP.DP is a safe and effective treatment of IOAVFs that can be performed via multiple image guided methods and guarantees a definitive cure. Orbital hematomas are a potential complication of which operators should be aware.

2.
Clin Cancer Res ; 29(13): 2419-2425, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37093199

RESUMO

PURPOSE: Glioblastoma represents the most common primary brain tumor. Although antiangiogenics are used in the recurrent setting, they do not prolong survival. Glioblastoma is known to upregulate fatty acid synthase (FASN) to facilitate lipid biosynthesis. TVB-2640, a FASN inhibitor, impairs this activity. PATIENTS AND METHODS: We conducted a prospective, single-center, open-label, unblinded, phase II study of TVB-2640 plus bevacizumab in patients with recurrent high-grade astrocytoma. Patients were randomly assigned to TVB-2640 (100 mg/m2 oral daily) plus bevacizumab (10 mg/kg i.v., D1 and D15) or bevacizumab monotherapy for cycle 1 only (28 days) for biomarker analysis. Thereafter, all patients received TVB-2640 plus bevacizumab until treatment-related toxicity or progressive disease (PD). The primary endpoint was progression-free survival (PFS). RESULTS: A total of 25 patients were enrolled. The most frequently reported adverse events (AE) were palmar-plantar erythrodysesthesia, hypertension, mucositis, dry eye, fatigue, and skin infection. Most were grade 1 or 2 in intensity. The overall response rate (ORR) for TVB-2640 plus bevacizumab was 56% (complete response, 17%; partial response, 39%). PFS6 for TVB-2640 plus bevacizumab was 31.4%. This represented a statistically significant improvement in PFS6 over historical bevacizumab monotherapy (BELOB 16%; P = 0.008) and met the primary study endpoint. The observed OS6 was 68%, with survival not reaching significance by log-rank test (P = 0.56). CONCLUSIONS: In this phase II study of relapsed high-grade astrocytoma, TVB-2640 was found to be a well-tolerated oral drug that could be safely combined with bevacizumab. The favorable safety profile and response signals support the initiation of a larger multicenter trial of TVB-2640 plus bevacizumab in astrocytoma.


Assuntos
Glioblastoma , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bevacizumab/efeitos adversos , Doença Crônica , Intervalo Livre de Doença , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Recidiva
3.
Structure ; 30(6): 793-802.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35395178

RESUMO

DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , Sítios de Ligação , Domínio Catalítico , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
4.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34790902

RESUMO

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Decitabina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA