Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159511, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38761896

RESUMO

Obesity-induced type 2 diabetes (T2D) increases the risk of metabolic syndrome due to the high calorie intake. The role of sugar beet pulp (SBP) in T2D and the mechanism of its action remain unclear, though it is abundant in phenolics and has antioxidant activity. In this study, we isolated and purified ferulic acid from SBP, referred to as SBP-E, and studied the underlying molecular mechanisms in the regulation of glucose and lipid metabolism developing high glucose/high fat diet-induced diabetic models in vitro and in vivo. SBP-E showed no cytotoxicity and reduced the oxidative stress by increasing glutathione (GSH) in human liver (HepG2) and rat skeletal muscle (L6) cells. It also decreased body weight gain, food intake, fasting blood glucose levels (FBGL), glucose intolerance, hepatic steatosis, and lipid accumulation. Additionally, SBP-E decreased the oxidative stress and improved the antioxidant enzyme levels in high-fat diet (HFD)-induced T2D mice. Further, SBP-E reduced plasma and liver advanced glycation end products (AGEs), malondialdehyde (MDA), and pro-inflammatory cytokines, and increased anti-inflammatory cytokines in HFD-fed mice. Importantly, SBP-E significantly elevated AMPK, glucose transporter, SIRT1 activity, and Nrf2 expression and decreased ACC activity and SREBP1 levels in diabetic models. Collectively, our study results suggest that SBP-E treatment can improve obesity-induced T2D by regulating glucose and lipid metabolism via SIRT1/AMPK signalling and the AMPK/SREBP1/ACC1 pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Beta vulgaris , Ácidos Cumáricos , Diabetes Mellitus Tipo 2 , Obesidade , Sirtuína 1 , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Animais , Obesidade/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Beta vulgaris/química , Humanos , Camundongos , Células Hep G2 , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Ratos , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo
2.
J Biochem ; 174(3): 227-237, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37115499

RESUMO

Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Homóloga , DNA , Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples
3.
J Food Biochem ; 46(2): e14038, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981525

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) is a potent metabolic regulator and an attractive target for antidiabetic activators. Here we report for the first that, trans-ferulic acid (TFA) is a potent dietary bioactive molecule of hydroxycinnamic acid derivative for the activation of AMPK with a maximum increase in phosphorylation (2.71/2.67 ± 0.10; p < .001 vs. high glucose [HG] control) in hyperglycemia-induced human liver cells (HepG2) and rat skeletal muscle cells (L6), where HG suppresses the AMPK pathway. It was also observed that TFA increased activation of AMPK in a dose- and time-dependent manner and also increased the phosphorylation of acetyl-CoA carboxylase (ACC), suggesting that it may promotes fatty acid oxidation; however, pretreatment with compound C reversed the effect. In addition, TFA reduced the level of intracellular reactive oxygen species (ROS) and nitric oxide (NO) induced by hyperglycemia and subsequently increased the level of glutathione. Interestingly, TFA also upregulated the glucose transporters, GLUT2 and GLUT4, and inhibited c-Jun N-terminal protein kinase (JNK1/2) by decreasing the phosphorylation level in tested cells under HG condition. Our studies provide critical insights into the mechanism of action of TFA as a potential natural activator of AMPK under hyperglycemia. PRACTICAL APPLICATIONS: Hydroxycinnamic acid derivatives possess various pharmacological properties and are found to be one of the most ubiquitous groups of plant metabolites in almost all dietary sources. However, the tissue-specific role and its mechanism under hyperglycemic condition remain largely unknown. The present study showed that TFA is a potent activator of AMPK under HG condition and it could be used as a therapeutic agent against hyperglycemia in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/farmacologia , Animais , Ácidos Cumáricos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Hiperglicemia/tratamento farmacológico , Estresse Oxidativo , Ratos , Transdução de Sinais
4.
Protein Expr Purif ; 189: 105967, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481085

RESUMO

Recombinases are responsible for homologous recombination (HR), proper genome maintenance, and accurate deoxyribonucleic acid (DNA) duplication. Moreover, HR plays a determining role in DNA transaction processes such as DNA replication, repair, recombination, and transcription. Staphylococcus aureus, an opportunistic pathogen, usually causes respiratory infections such as sinusitis, skin infections, and food poisoning. To date, the role of the RecA gene product in S. aureus remains obscure. In this study, we attempted to map the functional properties of the RecA protein. S. aureus expresses the recA gene product in vivo upon exposure to the DNA-damaging agents, ultraviolet radiation, and methyl methanesulfonate. The recombinant purified S. aureus RecA protein displayed strong single-stranded DNA affinity compared to feeble binding to double-stranded DNA. Interestingly, the RecA protein is capable of invasion and formed displacement loops and readily performed strand-exchange activities with an oligonucleotide-based substrate. Notably, the S. aureus RecA protein hydrolyzed the DNA-dependent adenosine triphosphate and cleaved LexA, showing the conserved function of coprotease. This study provides the functional characterization of the S. aureus RecA protein and sheds light on the canonical processes of homologous recombination, which are conserved in the gram-positive foodborne pathogen S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/genética , Recombinases Rec A/genética , Reparo de DNA por Recombinação , Serina Endopeptidases/metabolismo , Staphylococcus aureus/genética , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Metanossulfonato de Metila/farmacologia , Ligação Proteica , Transporte Proteico , Recombinases Rec A/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/efeitos da radiação , Termodinâmica , Raios Ultravioleta/efeitos adversos
5.
Int J Biochem Cell Biol ; 119: 105642, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698090

RESUMO

The recombinases present in the all kingdoms in nature play a crucial role in DNA metabolism processes such as replication, repair, recombination and transcription. However, till date, the role of RecA in the deadly foodborne pathogen Listeria monocytogenes remains unknown. In this study, the authors show that L. monocytogenes expresses recA more than two-fold in vivo upon exposure to the DNA damaging agents, methyl methanesulfonate and ultraviolet radiation. The purified L. monocytogenes RecA protein show robust binding to single stranded DNA. The RecA is capable of forming displacement loop and hydrolyzes ATP, whereas the mutant LmRecAK70A fails to hydrolyze ATP, showing conserved walker A and B motifs. Interestingly, L. monocytogenes RecA and LmRecAK70A perform the DNA strand transfer activity, which is the hallmark feature of RecA protein with an oligonucleotide-based substrate. Notably, L. monocytogenes RecA readily cleaves L. monocytogenes LexA, the SOS regulon and protects the presynaptic filament from the exonuclease I activity. Altogether, this study provides the first detailed characterization of L. monocytogenes RecA and presents important insights into the process of homologous recombination in the gram-positive foodborne bacteria L. monocytogenes.


Assuntos
Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Recombinação Homóloga , Listeria monocytogenes/enzimologia , Resposta SOS em Genética , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/metabolismo
6.
Biochem Biophys Res Commun ; 517(4): 655-661, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416617

RESUMO

Bacterial RecA plays an important role in the evaluation of antibiotic resistance via stress-induced DNA repair mechanism; SOS response. Accordingly, RecA became an important therapeutic target against antimicrobial resistance. Small molecule inhibitors of RecA may prevent adaptation of antibiotic resistance mutations and the emergence of antimicrobial resistance. In our study, we observed that phenolic compound p-Coumaric acid as potent RecA inhibitor. It inhibited RecA driven biochemical activities in vitro such as ssDNA binding, strand exchange, ATP hydrolysis and RecA coprotease activity of E. coli and L. monocytogenes RecA proteins. The mechanism underlying such inhibitory action of p-Coumaric acid involves its ability to interfere with the DNA binding domain of RecA protein. p-Coumaric acid also potentiates the activity of ciprofloxacin by inhibiting drastic cell survival of L. monocytogenes as well as filamentation process; the bacteria defensive mechanism in response to DNA damage. Additionally, it also blocked the ciprofloxacin induced RecA expression leading to suppression of SOS response in L. monocytogenes. These findings revealed that p-Coumaric acid is a potent RecA inhibitor, and can be used as an adjuvant to the existing antibiotics which not only enhance the shelf-life but also slow down the emergence of antibiotic resistance in bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Propionatos/farmacologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ciprofloxacina/farmacologia , Ácidos Cumáricos , Reparo do DNA/efeitos dos fármacos , DNA Bacteriano/antagonistas & inibidores , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Hidrólise/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Testes de Sensibilidade Microbiana , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética/efeitos dos fármacos
7.
J Biosci ; 40(1): 13-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25740138

RESUMO

Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the 'switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.


Assuntos
Proteínas de Ligação a DNA/ultraestrutura , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/ultraestrutura , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Recombinases Rec A/metabolismo
8.
Nucleic Acids Res ; 42(19): 11992-9, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294832

RESUMO

Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Fenômenos Biomecânicos , DNA de Cadeia Simples , Polimerização
9.
J Antimicrob Chemother ; 69(7): 1834-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24722837

RESUMO

OBJECTIVES: In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. METHODS: We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. RESULTS: We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC(50) values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. CONCLUSIONS: Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.


Assuntos
Antituberculosos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Suramina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Inibidores de Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA