Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(50): e202313037, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818778

RESUMO

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e-SE is highlighted through late-stage C-terminal modification of the FDA-approved cancer drug leuprolide and assembly of a library of anti-HER2 affibody conjugates bearing complex cargoes. Following assembly by e-SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.


Assuntos
Antineoplásicos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Linhagem Celular
2.
J Am Chem Soc ; 145(30): 16355-16364, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486221

RESUMO

Cuneane is a strained hydrocarbon that can be accessed via metal-catalyzed isomerization of cubane. The carbon atoms of cuneane define a polyhedron of the C2v point group with six faces─two triangular, two quadrilateral, and two pentagonal. The rigidity, strain, and unique exit vectors of the cuneane skeleton make it a potential scaffold of interest for the synthesis of functional small molecules and materials. However, the limited previous synthetic efforts toward cuneanes have focused on monosubstituted or redundantly substituted systems such as permethylated, perfluorinated, and bis(hydroxymethylated) cuneanes. Such compounds, particularly rotationally symmetric redundantly substituted cuneanes, have limited potential as building blocks for the synthesis of complex molecules. Reliable, predictable, and selective syntheses of polysubstituted cuneanes bearing more complex substitution patterns would facilitate the study of this ring system in myriad applications. Herein, we report the regioselective, AgI-catalyzed isomerization of asymmetrically 1,4-disubstituted cubanes to cuneanes. In-depth DFT calculations provide a charge-controlled regioselectivity model, and direct dynamics simulations indicate that the nonclassical carbocation invoked is short-lived and dynamic effects augment the charge model.

3.
Nat Commun ; 13(1): 6885, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371402

RESUMO

The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.


Assuntos
Peptídeos , Selenocisteína , Selenocisteína/química , Peptídeos/química , Proteínas , Aminoácidos
4.
BMC Med ; 20(1): 28, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35081974

RESUMO

BACKGROUND: Understanding the age patterns of disease is necessary to target interventions to maximise cost-effective impact. New malaria chemoprevention and vaccine initiatives target young children attending routine immunisation services. Here we explore the relationships between age and severity of malaria hospitalisation versus malaria transmission intensity. METHODS: Clinical data from 21 surveillance hospitals in East Africa were reviewed. Malaria admissions aged 1 month to 14 years from discrete administrative areas since 2006 were identified. Each site-time period was matched to a model estimated community-based age-corrected parasite prevalence to provide predictions of prevalence in childhood (PfPR2-10). Admission with all-cause malaria, severe malaria anaemia (SMA), respiratory distress (RD) and cerebral malaria (CM) were analysed as means and predicted probabilities from Bayesian generalised mixed models. RESULTS: 52,684 malaria admissions aged 1 month to 14 years were described at 21 hospitals from 49 site-time locations where PfPR2-10 varied from < 1 to 48.7%. Twelve site-time periods were described as low transmission (PfPR2-10 < 5%), five low-moderate transmission (PfPR2-10 5-9%), 20 moderate transmission (PfPR2-10 10-29%) and 12 high transmission (PfPR2-10 ≥ 30%). The majority of malaria admissions were below 5 years of age (69-85%) and rare among children aged 10-14 years (0.7-5.4%) across all transmission settings. The mean age of all-cause malaria hospitalisation was 49.5 months (95% CI 45.1, 55.4) under low transmission compared with 34.1 months (95% CI 30.4, 38.3) at high transmission, with similar trends for each severe malaria phenotype. CM presented among older children at a mean of 48.7 months compared with 39.0 months and 33.7 months for SMA and RD, respectively. In moderate and high transmission settings, 34% and 42% of the children were aged between 2 and 23 months and so within the age range targeted by chemoprevention or vaccines. CONCLUSIONS: Targeting chemoprevention or vaccination programmes to areas where community-based parasite prevalence is ≥10% is likely to match the age ranges covered by interventions (e.g. intermittent presumptive treatment in infancy to children aged 2-23 months and current vaccine age eligibility and duration of efficacy) and the age ranges of highest disease burden.


Assuntos
Malária Cerebral , Malária Falciparum , Adolescente , África Oriental/epidemiologia , Teorema de Bayes , Criança , Pré-Escolar , Hospitalização , Humanos , Lactente , Malária Cerebral/epidemiologia , Malária Falciparum/epidemiologia , Fenótipo
5.
J Med Chem ; 64(14): 10102-10123, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255515

RESUMO

CREBBP (CBP/KAT3A) and its paralogue EP300 (KAT3B) are lysine acetyltransferases (KATs) that are essential for human development. They each comprise 10 domains through which they interact with >400 proteins, making them important transcriptional co-activators and key nodes in the human protein-protein interactome. The bromodomains of CREBBP and EP300 enable the binding of acetylated lysine residues from histones and a number of other important proteins, including p53, p73, E2F, and GATA1. Here, we report a work to develop a high-affinity, small-molecule ligand for the CREBBP and EP300 bromodomains [(-)-OXFBD05] that shows >100-fold selectivity over a representative member of the BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon cancer cells results in lowered levels of c-Myc and a reduction in H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2), the inhibition of the CREBBP/EP300 bromodomain results in the enhanced stabilization of HIF-1α.


Assuntos
Benzodiazepinonas/farmacologia , Proteína de Ligação a CREB/antagonistas & inibidores , Desenho de Fármacos , Proteína p300 Associada a E1A/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Benzodiazepinonas/síntese química , Benzodiazepinonas/química , Proteína de Ligação a CREB/metabolismo , Relação Dose-Resposta a Droga , Proteína p300 Associada a E1A/metabolismo , Células HCT116 , Humanos , Ligantes , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326252

RESUMO

Gaining a fundamental insight into the biomolecular recognition of posttranslationally modified histones by epigenetic reader proteins is of crucial importance to understanding the regulation of the activity of human genes. Here, we seek to establish whether trimethylthialysine, a simple trimethyllysine analogue generated through cysteine alkylation, is a good trimethyllysine mimic for studies on molecular recognition by reader proteins. Histone peptides bearing trimethylthialysine and trimethyllysine were examined for binding with five human reader proteins employing a combination of thermodynamic analyses, molecular dynamics simulations and quantum chemical analyses. Collectively, our experimental and computational findings reveal that trimethylthialysine and trimethyllysine exhibit very similar binding characteristics for the association with human reader proteins, thereby justifying the use of trimethylthialysine for studies aimed at dissecting the origin of biomolecular recognition in epigenetic processes that play important roles in human health and disease.


Assuntos
Cisteína/análogos & derivados , Histonas/química , Lisina/análogos & derivados , Sítios de Ligação , Cisteína/síntese química , Cisteína/química , Epigênese Genética , Histonas/metabolismo , Humanos , Lisina/síntese química , Lisina/química , Metilação , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade , Termodinâmica
7.
Angew Chem Int Ed Engl ; 58(7): 1990-1994, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30569575

RESUMO

Enzymes often use nucleophilic serine, threonine, and cysteine residues to achieve the same type of reaction; the underlying reasons for this are not understood. While bacterial d,d-transpeptidases (penicillin-binding proteins) employ a nucleophilic serine, l,d-transpeptidases use a nucleophilic cysteine. The covalent complexes formed by l,d-transpeptidases with some ß-lactam antibiotics undergo non-hydrolytic fragmentation. This is not usually observed for penicillin-binding proteins, or for the related serine ß-lactamases. Replacement of the nucleophilic serine of serine ß-lactamases with cysteine yields enzymes which fragment ß-lactams via a similar mechanism as the l,d-transpeptidases, implying the different reaction outcomes are principally due to the formation of thioester versus ester intermediates. The results highlight fundamental differences in the reactivity of nucleophilic serine and cysteine enzymes, and imply new possibilities for the inhibition of nucleophilic enzymes.


Assuntos
Antibacterianos/metabolismo , Cisteína/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/química , Cisteína/química , Conformação Molecular , Peptidil Transferases/química , beta-Lactamases/química , beta-Lactamas/química
8.
Nat Chem Biol ; 14(10): 955-963, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224694

RESUMO

Isotopic replacement has long-proven applications in small molecules. However, applications in proteins are largely limited to biosynthetic strategies or exchangeable (for example, N-H/D) labile sites only. The development of postbiosynthetic, C-1H → C-2H/D replacement in proteins could enable probing of mechanisms, among other uses. Here we describe a chemical method for selective protein α-carbon deuteration (proceeding from Cys to dehydroalanine (Dha) to deutero-Cys) allowing overall 1H→2H/D exchange at a nonexchangeable backbone site. It is used here to probe mechanisms of reactions used in protein bioconjugation. This analysis suggests, together with quantum mechanical calculations, stepwise deprotonations via on-protein carbanions and unexpected sulfonium ylides in the conversion of Cys to Dha, consistent with a 'carba-Swern' mechanism. The ready application on existing, intact protein constructs (without specialized culture or genetic methods) suggests this C-D labeling strategy as a possible tool in protein mechanism, structure, biotechnology and medicine.


Assuntos
Alanina/análogos & derivados , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteômica/métodos , Alanina/química , Sítios de Ligação , Cisteína/química , Medição da Troca de Deutério , Proteínas de Fluorescência Verde/química , Histonas/química , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Solventes/química
9.
Biochemistry ; 56(32): 4219-4234, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28656748

RESUMO

Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.


Assuntos
Monofosfato de Adenosina/química , Antiportadores de Potássio-Hidrogênio/química , Dobramento de Proteína , Multimerização Proteica , Shewanella/química , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Shewanella/genética , Shewanella/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(18): 4667-4672, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420789

RESUMO

Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.


Assuntos
Proteínas de Bactérias/química , Etilenos/química , Ácidos Cetoglutáricos/química , Liases/química , Modelos Químicos , Pseudomonas syringae/enzimologia , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Etilenos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Liases/metabolismo
11.
Org Biomol Chem ; 14(46): 10926-10938, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27814427

RESUMO

CREBBP bromodomains, epigenetic "reader" proteins that recognize acetylated histone lysine residues, are a current target for cancer therapy. We show that experimental CREBBP binding affinities of small-molecules with aromatic or heteroaromatic functional groups are strongly influenced by a cation-π interaction with a positively charged arginine residue. For a series of fifteen 5-isoxazolylbenzimidazole derivatives, the strength of this non-covalent interaction is directly related to improvements in binding to CREBBP. The aromatic substituents' inductive and resonance effects are not obviously correlated with observed structure and affinity relationships. In contrast, a coulombic electrostatic model can quantitatively predict the interaction strength. We have assessed different Molecular Mechanics (MM) and Quantum Mechanics (QM) descriptions of the protein-ligand interaction. Quantitative models for binding affinity were generated from: (1) Poisson Boltzmann Surface Area (MM-PBSA) and Generalized Born Surface Area (MM-GBSA) scoring functions that incorporated the entire ligand and (2) QM-complexation energies and (3) Electrostatic Potential Surface values (ESPs) that analyzed the varying aromatic group. A linear relationship between QM-computed ESP values is established for the cation-π interaction strength, and gives the best correlation (R2 = 0.84) with experimental binding affinities. This model also ranks ligand affinity most accurately (rs = 0.91) from the models tested. Consideration of the electrostatic potential in response to the local effects of substituents in addition to that of the aromatic ring is necessary to understand and describe the interaction with the cationic guanidinium ion. This leads to an improved understanding and the ability to quantitatively predict the magnitude of non-covalent interactions in the CREBBP active site.

12.
J Mol Graph Model ; 67: 69-84, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258188

RESUMO

Epigenetic pathways are involved in a wide range of diseases, including cancer and neurological disorders. Specifically, histone modifying and reading processes are the most broadly studied and are targeted by several licensed drugs. Although there have been significant advances in understanding the mechanistic aspects underlying epigenetic regulation, the development of selective small-molecule inhibitors remains a challenge. Experimentally, it is generally difficult to elucidate the atomistic basis for substrate recognition, as well as the sequence of events involved in binding and the subsequent chemical processes. In this regard, computational modelling is particularly valuable, since it can provide structural features (including transition state structures along with kinetic and thermodynamic parameters) that enable both qualitative and quantitative evaluation of the mechanistic details involved. Here, we summarize knowledge gained from computational modelling studies elucidating the role of the protein environment in histone-lysine modifying and reading mechanisms. We give a perspective on the importance of calculations to aid and advance the understanding of these processes and for the future development of selective inhibitors for epigenetic regulators.


Assuntos
Enzimas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Domínio Catalítico , Desmetilação , Epigênese Genética , Histona Desacetilases/metabolismo , Metilação , Modelos Moleculares , Sirtuínas/metabolismo , Especificidade por Substrato
13.
Chemistry ; 21(52): 18983-92, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26577067

RESUMO

JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition.


Assuntos
Histona Desmetilases/química , Histonas/química , Histona Desmetilases com o Domínio Jumonji/química , Sítios de Ligação , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ligação Proteica
14.
ACS Chem Biol ; 10(1): 22-39, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25549280

RESUMO

Bromodomains are protein modules that bind to acetylated lysine residues. Their interaction with histone proteins suggests that they function as "readers" of histone lysine acetylation, a component of the proposed "histone code". Bromodomain-containing proteins are often found as components of larger protein complexes with roles in fundamental cellular process including transcription. The publication of two potent ligands for the BET bromodomains in 2010 demonstrated that small molecules can inhibit the bromodomain-acetyl-lysine protein-protein interaction. These molecules display strong phenotypic effects in a number of cell lines and affect a range of cancers in vivo. This work stimulated intense interest in developing further ligands for the BET bromodomains and the design of ligands for non-BET bromodomains. Here we review the recent progress in the field with particular attention paid to ligand design, the assays employed in early ligand discovery, and the use of computational approaches to inform ligand design.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Acetilação , Animais , Humanos , Ligantes , Modelos Moleculares , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA