Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; 113(8): e23518, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35621373

RESUMO

Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Peptídeos Penetradores de Células , 1,2-Dipalmitoilfosfatidilcolina/química , Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Solventes
2.
PLoS One ; 11(5): e0155911, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27218803

RESUMO

A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators.


Assuntos
Biologia Computacional/métodos , Proteínas de Neoplasias/química , Neoplasias/metabolismo , Peptídeos/genética , Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/genética , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA