Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400324, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108039

RESUMO

The liposomal systems proved remarkably useful for the delivery of genetic materials but enhancing their efficacy remains a significant challenge. While structural alterations could result in the discovery of more effective transfecting lipids, improving the efficacy of widely used lipid carriers is also crucial in order to compete with viral vectors for gene delivery. Herein, we developed formulations of commercially available lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with synthetic cationic lipids containing amino acids,  cystine (CTT) or arginine (AT) in the head group. These lipids were used to formulate with different co-lipid compositions and were broadly categorised into two types: amino acid-based liposomes without DOTAP (CTTD and ATD) and those with DOTAP (DtATD and DtCTTD). Optimized lipid-DNA complexes of DOTAP-incorporated formulations (DtATD and DtCTTD) exhibited enhanced efficacy in transfection compared to formulations lacking DOTAP as well as commercial formulations such as DOTAP:DOPE. Notably, DtCTTD displayed superior transfection capabilities in prostate cancer (PC3) and lung cancer (A549) cell lines when compared to the widely used commercial transfection reagent, Lipofectamine. Collectively, the findings from this study suggest that DOTAP-incorporated formulations derived from amino acid-based liposomes, hold promise as effective tools for improving transfection efficacy with reduced toxicity, offering potential advancements in gene delivery applications.

2.
RSC Adv ; 12(51): 33264-33275, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425189

RESUMO

Amino acid-based cationic lipids, which have proven their efficacy as plasmid DNA nanocarriers, were employed as dicationic forms to transfect genes into cancer and non-cancer cells in this study. Proline, methionine, and serine amino acids are involved as hydrophilic moieties and the hydrocarbon long-chain serves as a hydrophobic tail. In a multicultural investigation, cationic lipids were employed as nano-vectors in conjunction with the helper lipid DOPE. To quantify the lipid efficient size, charge, and pDNA binding, biophysical analyses such as hydrodynamic diameter, zeta potential, agarose gel electrophoresis, and serum stability were done primarily. The liposomal particle composition was examined by scanning electron microscopy (SEM). Synthesized dicationic vector lipoplex formulations with reporter genes were found to be non-toxic to the cells investigated by MTT assay, and in addition, therapeutic gene p53 transfected into oral and brain cancer cells causing cell death was examined. In vitro investigations further validated that the proline-based lipid (C14-P) has high gene knockdown efficacy than methionine-based lipid (C14-M) and serine-based lipid (C14-S) at optimal N/P ratios as measured by ß-galactosidase protein and eGFP expression. C14-P lipid shows superior cellular internalization compared to C14-M and C14-S in HEK-293 and CAL-27 cells attested by confocal study. These findings could include the proline-based lipid vector's exceptional gene delivery activity.

3.
ACS Omega ; 7(35): 31388-31402, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092589

RESUMO

Cimetidine, a histamine-2 (H2) receptor antagonist, has been found to have anticancer properties against a number of cancer-type cells. In this report, we have demonstrated that cimetidine can acts as a hydrophilic domain in cationic lipids and targetable to the gastric system by carrying reporter genes and therapeutic genes through in vitro transfection. Two lipids, namely, Toc-Cim and Chol-Cim consisting cimetidine as the main head group and hydrophobic moieties as alpha-tocopherol or cholesterol, respectively, were designed and synthesized. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is a well-known co-lipid employed to produce liposomes as uniform vesicles. The liposomes and lipoplexes were structurally and functionally evaluated for global surface charges and hydrodynamic diameters, and results found that both liposome and lipoplex size and surface charges are optimal to screen the transfection potentials. DNA-binding studies were analyzed as complete binding at all formulated N/P ratios. The liposomes and lipoplexes of both the lipids Toc-Cim and Chol-Cim show minimal cytotoxicity even though at higher concentrations. The results of the transfection experiments revealed that tocopherol-based cationic lipids (Toc-Cim) show finer transfection efficacy with optimized N/P ratios (2:1 and 4:1) in the colon cancer cell line. Toc-Cim lipoplexes show higher cellular uptake compare to Chol-Cim in the colon cancer cell line at 2:1 and 4:1 N/P ratios. Toc-Cim and Chol-Cim lipids showed highly compatible serum, examined up to 50% of the serum concentration. To evaluate the apoptotic cell death in CT-26 cells, exposed to Toc-Cim:p53 and Chol-Cim:p53 lipoplexes at 2:1 N/P ratios, superior results showed with Toc-Cim:p53. An effect of TP53 protein expression in CT-26 cell lines assayed by western blot, transfected with Toc-Cim:p53 and Chol-Cim:p53 lipoplexes, demonstrated the superior efficacy of Toc-Cim. All of the findings suggest that Toc-Cim lipid is relatively secure and is an effective transfection agent to colon cancer gene delivery.

4.
ACS Omega ; 6(35): 22955-22968, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514266

RESUMO

Cationic gemini lipopeptides are a relatively new class of amphiphilic compounds to be used for gene delivery. Through the possibility of incorporating short peptides with cell-penetrating functionalities, these lipopeptides may be advantageous over traditional cationic lipids. Herein, we report the design, synthesis, and application of a novel cationic gemini lipopeptide for gene delivery. An ultrashort peptide, containing four amino acids, arginine-cysteine-cysteine-arginine, serves as a cationic head group, and two α-tocopherol moieties act as hydrophobic anchoring groups. The new lipopeptide (ATTA) is incorporated into the conventional liposomes, containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), at different molar ratios. The formulated liposomes are characterized and screened for better transfection efficiency. Transfection activity in multiple human cell lines from cancerous and noncancerous origins indicates that the inclusion of an optimal ratio of ATTA in the liposomes substantially enhances the transfection efficiency, superior to that of a traditional liposome, DOTAP-DOPE. Cytotoxicity of ATTA-containing formulations against multiple cell lines indicates potentially distinct activity between cancer and noncancer cell lines. Furthermore, lipoplexes of the ATTA-containing formulations with anticancer therapeutic gene, plasmid encoding tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL), induce obviously more cytotoxicity than conventional formulations. The results indicate that arginine-rich cationic lipopeptide appears to be a promising ingredient in gene delivery vector formulations to enhance transfection efficiency and cell-selective cytotoxicity.

5.
Mater Sci Eng C Mater Biol Appl ; 126: 112189, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082988

RESUMO

The incorporation of specific therapeutic gene into glioblastoma offers potent therapeutic strategy to treat the disease. Non-viral gene delivery vectors are of particular interest due to their tuneable transfection efficiency and easy scale-up. Herein, we demonstrate successful delivery of plasmid encoding tumor necrosis factor (TNF)-related apoptosis-inducing ligand (pTRAIL) using arginine-conjugated tocopherol lipid (AT) nanovesicles into glioblastoma cell lines. Another cationic lipid, glycine-conjugated tocopherol lipid (GT) having glycine in the head group region is also synthesized as a control lipid. Both lipid-derived liposomes effectively condensed the pDNA and the corresponding biomacromolecular assemblies (lipoplexes) are efficiently transfected into different cell lines. AT-based liposomes exhibit higher transfection efficacy in various cell lines, particularly selective in glioma cell lines. At an optimized N/P ratio, both the liposomal formulations show low cytotoxicity. AT-based lipoplexes have superior cellular uptake in U87 than the control lipid GT. The expression of TRAIL protein regulated death receptor and apoptosis signaling pathway is assayed by western blot using transfection of AT-based/pTRAIL into U87 cell lines. Induction of apoptosis in U87 cells exposed to AT-based/pTRAIL plasmid is evaluated by MTT assay as well as Annexin V-propidium iodide dual-staining assay. All results indicate that the developed AT-based/pTRAIL system offers a potentially safe and efficient therapeutic strategy for glioblastoma gene therapy.


Assuntos
Glioblastoma , Apoptose , Arginina , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Lipídeos , Lipossomos , Plasmídeos/genética , Tocoferóis , Transfecção
6.
Bioorg Chem ; 82: 178-191, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30326400

RESUMO

Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.


Assuntos
Ácido Ascórbico/farmacologia , DNA/química , Sequestradores de Radicais Livres/farmacologia , Lipossomos/farmacologia , Tensoativos/farmacologia , alfa-Tocoferol/farmacologia , Animais , Ácido Ascórbico/síntese química , Ácido Ascórbico/química , Ácido Ascórbico/toxicidade , Células CHO , Linhagem Celular Tumoral , Cricetulus , DNA/genética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/toxicidade , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lipossomos/síntese química , Lipossomos/química , Lipossomos/toxicidade , Camundongos , Tensoativos/síntese química , Tensoativos/química , Tensoativos/toxicidade , Transfecção/métodos , alfa-Tocoferol/síntese química , alfa-Tocoferol/química , alfa-Tocoferol/toxicidade
7.
Org Biomol Chem ; 14(28): 6857-70, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27348545

RESUMO

Gene therapy, a promising strategy for the delivery of therapeutic nucleic acids, is greatly dependent on the development of efficient vectors. In this study, we designed and synthesized several tocopherol-based lipids varying in the head group region. Here, we present the structure-activity relationship of stable aqueous suspensions of lipids that were synthetically prepared and formulated with 1,2-dioleoyl phosphatidyl ethanolamine (DOPE) as the co-lipid. The physicochemical properties such as the hydrodynamic size, zeta potential, stability and morphology of these formulations were investigated. Interaction with plasmid DNA was clearly demonstrated through gel binding and EtBr displacement assays. Further, the transfection potential was examined in mouse neuroblastoma Neuro-2a, hepatocarcinoma HepG2, human embryonic kidney and Chinese hamster ovarian cell lines, all of different origins. Cell-uptake assays with N-methylpiperidinium, N-methylmorpholinium, N-methylimidazolium and N,N-dimethylaminopyridinium head group containing formulations evidently depicted efficient cell uptake as observed by particulate cytoplasmic fluorescence. Trafficking of lipoplexes using an endocytic marker and rhodamine-labeled phospholipid DHPE indicated that the lipoplexes were not sequestered in the lysosomes. Importantly, lipoplexes were non-toxic and mediated good transfection efficiency as analyzed by ß-Gal and GFP reporter gene expression assays which established the superior activity of lipids whose structures correlate strongly with the transfection efficiency.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Plasmídeos/administração & dosagem , Tocoferóis/química , Transfecção/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , DNA/genética , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Células Hep G2 , Humanos , Camundongos , Fosfatidiletanolaminas/química , Plasmídeos/genética , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 74: 703-16, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24262373

RESUMO

A series of benzothiazole based lipids (1-10) containing different derivatives of benzothiazole in the head group region were synthesized to determine the structure-activity relationship for gene delivery. The liposomes formulated were mixed with plasmid DNA encoding green fluorescent protein (α5GFP) or ß-galactosidase (pCMV-SPORT-ß-gal) and transfected into B16F10 (Human melanoma cancer cells), CHO (Chinese hamster ovary), A-549 (Human lung carcinoma cells) and MCF-7 (Human breast carcinoma cells) types of cell lines. The efficiencies of lipids 9 and 10 in particular, were found to be comparable and even more when compared to that of LipofectAmine-2000. The transfection profiles of the efficient lipids are proved to be maintained even in the presence of serum. Thus, the benzothiazole head group based lipids developed have the potential to be used as transfection reagents in vitro and in vivo.


Assuntos
Benzotiazóis/síntese química , Técnicas de Transferência de Genes , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Cátions , Lipossomos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
9.
Mol Pharm ; 9(5): 1146-62, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22428703

RESUMO

The molecular structure of the cationic lipids greatly influences their transfection efficiency. High transfection efficiencies of tocopherol-based simple monocationic transfection lipids with hydroxylethyl headgroups were recently reported by us (Kedika, B., et al. J. Med. Chem.2011, 54 (2), 548-561). Toward enhancing the transfection efficiency of tocopherol-based lipids, we have synthesized two tocopherol-based dicationic lipids (1 and 2) using simple cystine in the headgroup region. The efficiency of tocopherol-based lipids (1 and 2) were compared with nontocopherol-based lipids (3 and 4) with cystine in the headgroup region. We report also a comprehensive structure-activity relationship study that identified tocopherol-based gemini cationic lipid 1 is a better transfecting agent than its monomeric lipid counterpart 2 and two other nontocopherol-based gemini cationic lipids (3 and 4). The transfection efficiency of lipid 1 was also greater than that of commercial formulation in HepG2 cell lines. A major characteristic feature of this investigation is that serum does not inhibit the transfection activity of tocopherol-based lipids (1 and 2) in general and in particular lipid 1 which is found to be highly serum-compatible even at higher concentrations of serum when compared to its monomeric counterpart lipid 2 and the other two control lipid analogues 3 and 4.


Assuntos
Vetores Genéticos/química , Vetores Genéticos/síntese química , Tocoferóis/química , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Técnicas de Transferência de Genes , Células Hep G2 , Humanos , Lipídeos , Lipossomos/química , Microscopia de Fluorescência , Transfecção/métodos
10.
J Med Chem ; 54(2): 548-61, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21171618

RESUMO

Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both ß-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.


Assuntos
DNA/administração & dosagem , Lipídeos/síntese química , Tocoferóis/síntese química , Animais , Cátions , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lipídeos/toxicidade , Lipossomos , Nanoestruturas , Fosfatidilcolinas/química , Fosfatidilcolinas/toxicidade , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/toxicidade , Soro , Relação Estrutura-Atividade , Tocoferóis/química , Tocoferóis/toxicidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA