Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(12): e0079923, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37971271

RESUMO

In 2017, the Centers for Disease Control and Prevention (CDC) established the Antimicrobial Resistance Laboratory Network to improve domestic detection of multidrug-resistant organisms. CDC and four laboratories evaluated a commercial broth microdilution panel. Antimicrobial susceptibility testing using the Sensititre GN7F (ThermoFisher Scientific, Lenexa, KS) was evaluated by testing 100 CDC and Food and Drug Administration AR Isolate Bank isolates [40 Enterobacterales (ENT), 30 Pseudomonas aeruginosa (PSA), and 30 Acinetobacter baumannii (ACB)]. We assessed multiple amounts of transfer volume (TV) between the inoculum and tubed 11-mL cation-adjusted Mueller-Hinton broth: 1 µL [tribe Proteeae (P-tribe) only] and 10, 30, and 50 µL, resulting in respective CFU per milliter of 1 × 104, 1 × 105, 3 × 105, and 5 × 105. Four TV combinations were analyzed: standard (STD) [1 µL (P-tribe) and 10 µL], enhanced standard (E-STD) [1 µL (P-tribe) and 30 µL], 30 µL, and 50 µL. Essential agreement (EA), categorical agreement, major error (ME), and very major error (VME) were analyzed by organism then TVs. For ENT, the average EA across laboratories was <90% for 7 of 15 ß-lactams using STD and E-STD TVs. As TVs increased, EA increased (>90%), and VMEs decreased. For PSA, EA improved as TVs increased; however, MEs also increased. For ACB, increased TVs provided slight EA improvements; all TVs yielded multiple VMEs and MEs. For ENT and ACB, Minimum inhibitory concentrations (MICs) trended downward using a 1 or 10 µL TV; there were no obvious MIC trends by TV for PSA. The public health and clinical consequences of missing resistance warrant increased TV of 30 µL for the GN7F, particularly for P-tribe, despite being considered "off-label" use.


Assuntos
Acinetobacter baumannii , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Laboratórios , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
2.
FASEB J ; 34(12): 15922-15945, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047400

RESUMO

Enterotoxigenic Bacteroides fragilis (ETBF) is a commensal bacterium of great importance to human health due to its ability to induce colitis and cause colon tumor formation in mice through the production of B. fragilis toxin (BFT). The formation of tumors is dependent on a pro-inflammatory signaling cascade, which begins with the disruption of epithelial barrier integrity through cleavage of E-cadherin. Here, we show that BFT increases levels of glucosylceramide, a vital intestinal sphingolipid, both in mice and in colon organoids (colonoids) generated from the distal colons of mice. When colonoids are treated with BFT in the presence of an inhibitor of glucosylceramide synthase (GCS), the enzyme responsible for generating glucosylceramide, colonoids become highly permeable, lose structural integrity, and eventually burst, releasing their contents into the extracellular matrix. By increasing glucosylceramide levels in colonoids via an inhibitor of glucocerebrosidase (GBA, the enzyme that degrades glucosylceramide), colonoid permeability was reduced, and bursting was significantly decreased. In the presence of BFT, pharmacological inhibition of GCS caused levels of tight junction protein 1 (TJP1) to decrease. However, when GBA was inhibited, TJP1 levels remained stable, suggesting that BFT-induced production of glucosylceramide helps to stabilize tight junctions. Taken together, our data demonstrate a glucosylceramide-dependent mechanism by which the colon epithelium responds to BFT.


Assuntos
Toxinas Bacterianas/toxicidade , Bacteroides fragilis/metabolismo , Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glucosilceramidas/metabolismo , Metaloendopeptidases/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Glucosilceramidase/metabolismo , Glucosiltransferases/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismo
3.
Adv Cancer Res ; 140: 327-366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30060815

RESUMO

Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Medicina de Precisão , Esfingolipídeos/metabolismo , Animais , Apoptose , Descoberta de Drogas , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
4.
PLoS One ; 12(7): e0180372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692660

RESUMO

It is well documented that the tumor microenvironment profoundly impacts the etiology and progression of breast cancer, yet the contribution of the resident microbiome within breast tissue remains poorly understood. Tumor microenvironmental conditions, such as hypoxia and dense tumor stroma, predispose progressive phenotypes and therapy resistance, however the role of bacteria in this interplay remains uncharacterized. We hypothesized that the effect of individual bacterial secreted molecules on breast cancer viability and proliferation would be modulated by these tumor-relevant stressors differentially for cells at varying stages of progression. To test this, we incubated human breast adenocarcinoma cells (MDA-MB-231, MCF-DCIS.com) and non-malignant breast epithelial cells (MCF-10A) with N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL), a quorum-sensing molecule from Pseudomonas aeruginosa that regulates bacterial stress responses. This molecule was selected because Pseudomonas was recently characterized as a significant fraction of the breast tissue microbiome and OdDHL is documented to impact mammalian cell viability. After OdDHL treatment, we demonstrated the greatest decrease in viability with the more malignant MDA-MB-231 cells and an intermediate MCF-DCIS.com (ductal carcinoma in situ) response. The responses were also culture condition (i.e. microenvironment) dependent. These results contrast the MCF-10A response, which demonstrated no change in viability in any culture condition. We further determined that the observed trends in breast cancer viability were due to modulation of proliferation for both cell types, as well as the induction of necrosis for MDA-MB-231 cells in all conditions. Our results provide evidence that bacterial quorum-sensing molecules interact with the host tissue environment to modulate breast cancer viability and proliferation, and that the effect of OdDHL is dependent on both cell type as well as microenvironment. Understanding the interactions between bacterial signaling molecules and the host tissue environment will allow for future studies that determine the contribution of bacteria to the onset, progression, and therapy response of breast cancer.


Assuntos
4-Butirolactona/análogos & derivados , Neoplasias da Mama/patologia , Homosserina/análogos & derivados , Microambiente Tumoral/efeitos dos fármacos , 4-Butirolactona/farmacologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Homosserina/farmacologia , Humanos , Necrose
5.
Cancer Biol Ther ; 18(9): 640-650, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28686076

RESUMO

Therapy of colorectal cancer (CRC), especially a subset known as locally advanced rectal cancer, is challenged by progression and recurrence. Sphingolipids, a lipid subtype with vital roles in cellular function, play an important role in CRC and impact on therapeutic outcomes. In this review we discuss how dietary sphingolipids or the gut microbiome via alterations in sphingolipids influence CRC carcinogenesis. In addition, we discuss the expression of sphingolipid enzymes in the gastro-intestinal tract, their alterations in CRC, and the implications for therapy responsiveness. Lastly, we highlight some novel therapeutics that target sphingolipid signaling and have potential applications in the treatment of CRC. Understanding how sphingolipid metabolism impacts cell death susceptibility and drug resistance will be critical toward improving therapeutic outcomes.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Esfingolipídeos/uso terapêutico , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas , Tolerância a Radiação/efeitos dos fármacos , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA