Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 86(7): 1786-1792, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37450763

RESUMO

Bioassay-guided fractionation of the essential oil of Santalum album led to the identification of α-santalol (1) and ß-santalol (2) as new chemotypes of cannabinoid receptor type II (CB2) ligands with Ki values of 10.49 and 8.19 µM, respectively. Nine structurally new α-santalol derivatives (4a-4h and 5) were synthesized to identify more selective and potent CB2 ligands. Compound 4e with a piperazine structural moiety demonstrated a Ki value of 0.99 µM against CB2 receptor and did not show binding activity against cannabinoid receptor type I (CB1) at 10 µM. Compounds 1, 2, and 4e increased intracellular calcium influx in SH-SY5Y human neuroblastoma cells that were attenuated by CB2 antagonism or inverse agonism, supporting the results that these compounds are CB2 agonists. Molecular docking showed that 1 and 4e had similar binding poses, exhibiting a unique interaction with Thr114 within the CB2 receptor, and that the piperazine structural moiety is required for the binding affinity of 4e. A 200 ns molecular dynamics simulation of CB2 complexed with 4e confirmed the stability of the complex. This structural insight lays a foundation to further design and synthesize more potent and selective α-santalol-based CB2 ligands for drug discovery.


Assuntos
Agonismo Inverso de Drogas , Neuroblastoma , Humanos , Simulação de Acoplamento Molecular , Ligantes , Receptores de Canabinoides , Piperazinas/farmacologia , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Estrutura Molecular , Relação Estrutura-Atividade
2.
Mar Drugs ; 19(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199834

RESUMO

Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae. Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR) targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins. Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In silico molecular docking simulation enabled us to investigate and identify distinct binding features of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A bind to the crystal structures of the proteins with good affinity involving key interacting amino acid residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.


Assuntos
Benzofuranos/química , Dioxinas/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Células CHO , Linhagem Celular , Simulação por Computador , Cricetulus , Células HeLa , Humanos , Camundongos , Simulação de Acoplamento Molecular , Phaeophyceae/química , Ratos
3.
Food Chem ; 309: 125739, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31787394

RESUMO

Oxidation and enzymatic browning of food can affect nutritional quality, physical and chemical properties, and food safety, emphasizing the utmost importance of discovering new natural antioxidants and anti-browning agents. The present study aimed to characterize the antioxidant and anti-browning potential of 2-arylbenzofuran derivatives from the root bark of Morus alba Linn. All test compounds showed good antioxidant effects on non-enzymatic antioxidant assays. Only mulberrofuran H demonstrated potent inhibition against substrates l-tyrosine (IC50; 4.45 ± 0.55 µM) and l-DOPA (IC50; 19.70 ± 0.54 µM), indicating negative effects of the prenyl and geranyl groups in the other compounds. Molecular docking simulation predicted the involvement of an -OH group in the bulky substituent in C-11 in van der Waals interactions with copper ions (Cu400, Cu401) and peroxide ions (Per404) in the active site. Overall results characterize MH as an antioxidant and anti-browning agent, highlighting its potential role in food preservation.


Assuntos
Antioxidantes/química , Benzofuranos/química , Morus/química , Extratos Vegetais/química , Cor , Simulação de Acoplamento Molecular , Oxirredução , Casca de Planta/química , Raízes de Plantas/química
4.
Antioxidants (Basel) ; 8(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344959

RESUMO

Compounds were isolated from Ecklonia stolonifera Okamura, a marine brown alga widely consumed as food. Among the isolated compounds, 974-A was demonstrated for the first time to be a potent competitive inhibitor of mushroom tyrosinase activity towards l-tyrosine and l-DOPA (IC50 values = 1.57 ± 0.08 and 3.56 ± 0.22 µM, respectively). Molecular docking simulations clarified that the hydroxyl residues of the isolated compounds formed hydrogen bonds with residues at the catalytic and allosteric sites of tyrosinase, while other residues participated in hydrophobic interactions. Moreover, 974-A, phlorofucofuroeckol-A and eckol reduced the cellular melanin content and tyrosinase activity, and downregulated the expression of melanogenesis enzymes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 melanoma cells. These compounds also effectively scavenged radicals at the cellular level. Thus, our results revealed that compounds isolated from E. stolonifera are potent tyrosinase inhibitors with potential applications in the cosmetic industry for treatment of hyperpigmentation and for the anti-browning effect in the agricultural field.

5.
Mar Drugs ; 17(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108882

RESUMO

A marine red alga, Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae), is a rich source of bromophenols with a wide array of biological activities. This study investigates the anti-tyrosinase activity of the alga. Moderate activity was demonstrated by the methanol extract of S. latiuscula, and subsequent column chromatography identified three bromophenols: 2,3,6-tribromo-4,5-dihydroxybenzyl methyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). Bromophenols 1 and 3 exhibited potent competitive tyrosinase inhibitory activity against l-tyrosine substrates, with IC50 values of 10.78 ± 0.19 and 2.92 ± 0.04 µM, respectively. Against substrate l-3,4-dihydroxyphenylalanine (l-DOPA), compounds 1 and 3 demonstrated moderate activity, while 2 showed no observable effect. The experimental data were verified by a molecular docking study that found catalytic hydrogen and halogen interactions were responsible for the activity. In addition, compounds 1 and 3 exhibited dose-dependent inhibitory effects in melanin and intracellular tyrosinase levels in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Compounds 3 and 1 were the most effective tyrosinase inhibitors. In addition, increasing the bromine group number increased the mushroom tyrosinase inhibitory activity.


Assuntos
Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Rodófitas/química , Tirosina/antagonistas & inibidores , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Metanol/química , Simulação de Acoplamento Molecular
6.
Mar Drugs ; 17(3)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875760

RESUMO

The marine alga, Symphyocladia latiuscula (Harvey) Yamada, is a good source of bromophenols with numerous biological activities. This study aims to characterize the anti-diabetic potential of 2,3,6-tribromo-4,5-dihydroxybenzyl derivatives isolated from S. latiuscula via their inhibition of tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Additionally, this study uses in silico modeling and glucose uptake potential analysis in insulin-resistant (IR) HepG2 cells to reveal the mechanism of anti-diabetic activity. This bioassay-guided isolation led to the discovery of three potent bromophenols that act against PTP1B and α-glucosidase: 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). All compounds inhibited the target enzymes by 50% at concentrations below 10 µM. The activity of 1 and 2 was comparable to ursolic acid (IC50; 8.66 ± 0.82 µM); however, 3 was more potent (IC50; 5.29 ± 0.08 µM) against PTP1B. Interestingly, the activity of 1⁻3 against α-glucosidase was 30⁻110 times higher than acarbose (IC50; 212.66 ± 0.35 µM). Again, 3 was the most potent α-glucosidase inhibitor (IC50; 1.92 ± 0.02 µM). Similarly, 1⁻3 showed concentration-dependent glucose uptake in insulin-resistant HepG2 cells and downregulated PTP1B expression. Enzyme kinetics revealed different modes of inhibition. In silico molecular docking simulations demonstrated the importance of the 7⁻OH group for H-bond formation and bromine/phenyl ring number for halogen-bond interactions. These results suggest that bromophenols from S. latiuscula, especially highly brominated 3, are inhibitors of PTP1B and α-glucosidase, enhance insulin sensitivity and glucose uptake, and may represent a novel class of anti-diabetic drugs.


Assuntos
Compostos de Benzil/farmacologia , Diabetes Mellitus/tratamento farmacológico , Éteres/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Rodófitas/química , alfa-Glucosidases/metabolismo , Compostos de Benzil/química , Compostos de Benzil/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Éteres/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Resistência à Insulina , Simulação de Acoplamento Molecular
7.
Mar Drugs ; 17(2)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744179

RESUMO

The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol. Functional assays revealed that eckol had a concentration-dependent agonist effect on dopamine D3 and D4 receptors. The half maximal effective concentration (EC50) of eckol for the dopamine D3 and D4 receptors was 48.62 ± 3.21 and 42.55 ± 2.54 µM, respectively, while the EC50 values of dopamine as a reference agonist for these two receptors were 2.9 and 3.3 nM, respectively. In silico studies revealed that a low binding energy in addition to hydrophilic, hydrophobic, π⁻alkyl, and π⁻π T-shaped interactions are potential mechanisms by which eckol binds to the dopamine receptors to exert its agonist effects. Molecular dynamics (MD) simulation revealed that Phe346 of the dopamine receptors is important for binding of eckol, similar to eticlopride and dopamine. Our results collectively suggest that eckol is a potential D3/D4 agonist for the management of neurodegenerative diseases, such as Parkinson's disease.


Assuntos
Dioxinas/química , Dioxinas/farmacologia , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D4/agonistas , Animais , Linhagem Celular , Cricetinae , Dopamina , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ratos , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D4/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Food Sci Nutr ; 7(1): 205-215, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680174

RESUMO

The aim of the present study was a comparative investigation of water and 70% ethanol extracts derived from yellow and red onion (Allium cepa L.) peels against diabetes and diabetic complications. The total phenolic contents (TPCs) and total flavonoid contents (TFCs) of each cultivar, measured to assess phytochemical characteristics, showed a direct correlation with the in vitro antioxidant effects. Among the two captives, the yellow onion peel extract showed higher antioxidant activity than red one. However, all extracts exhibited significant protein tyrosine phosphatase 1B (PTP1B) inhibitory activity (IC50; 0.30-0.86 µg/ml), showing water extracts more potent (IC50; approximately 0.3 µg/mL), than the 70% ethanol extracts (IC50; approximately 0.8 µg/ml). Similarly, in insulin-resistant HepG2 cells, all extracts enhanced the glucose uptake and reduced the expression of PTP1B in a concentration-dependent manner, water extract displaying better activity. Our results overall suggest that in vitro antioxidant and antidiabetic potentials vary among red and yellow cultivars and extracting solvents, which could therefore be a promising strategy to prevent diabetes and associated complications.

9.
Molecules ; 23(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413117

RESUMO

Inhibition of glycogen synthase kinase 3ß (GSK-3ß) is considered to be the central therapeutic approach against Alzheimer's disease (AD). In the present study, boiled water extracts of the Kangen-karyu (KK) herbal mixture and its constituents were screened for GSK-3ß inhibitory activity. KK is used in traditional Kampo and Chinese medicines for improving cognitive function. The GSK-3ß inhibition potential was evaluated by using the Kinase-Glo luminescent kinase assay platform. Furthermore, enzyme kinetics and in silico modeling were performed by using AutoDockTools to demonstrate the mechanism of enzyme inhibition. KK extract significantly inhibited GSK-3ß in a concentration-dependent manner (IC50: 17.05 ± 1.14 µg/mL) when compared with the reference drug luteolin (IC50: 2.18 ± 0.13 µM). Among the six components of KK, extracts of Cyperi Rhizoma and Salviae Miltiorrhizae Radix significantly inhibited GSK-3ß with IC50 values of 20.68 ± 2.50 and 7.77 ± 1.38 µg/mL, respectively. Among the constituents of the roots of S. miltiorrhiza water extract, rosmarinic acid, magnesium lithospermate B, salvianolic acid A, salvianolic acid B, and salvianolic acid C inhibited GSK-3ß with IC50 values ranging from 6.97 to 135.5 µM. Salvianolic acid B was found to be an ATP-competitive inhibitor of GSK-3ß and showed the lowest IC50 value (6.97 ± 0.96 µM). In silico modeling suggested a mechanism of action by which the hydrophobic, π⁻cation, and hydrophilic interactions of salvianolic acid B at ATP and substrate sites are critical for the observed GSK-3ß inhibition. Therefore, one of the mechanisms of action of KK against AD may be the inhibition of GSK-3ß and one of the active components of KK is the root of S. miltiorrhiza and its constituents: rosmarinic acid, magnesium lithospermate B, and salvianolic acids A, B, and C. Our results demonstrate the pharmacological basis for the use of KK against AD.


Assuntos
Doença de Alzheimer/enzimologia , Medicamentos de Ervas Chinesas/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Alcenos/química , Alcenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Benzofuranos/química , Benzofuranos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Cinamatos/química , Cinamatos/farmacologia , Simulação por Computador , Depsídeos/química , Depsídeos/farmacologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Glicogênio Sintase Quinase 3 beta/química , Humanos , Lactatos/química , Lactatos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Raízes de Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Ácido Rosmarínico
10.
Int J Mol Sci ; 19(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786669

RESUMO

Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G (1), albanol B (2), and kuwanon G (3) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1⁻3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1⁻3 demonstrated negative binding energies in both enzymes. Moreover, 1⁻3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1⁻3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.


Assuntos
Benzofuranos/farmacologia , Flavonoides/farmacologia , Glucose/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Terpenos/farmacologia , Benzofuranos/química , Sítios de Ligação , Transporte Biológico , Flavonoides/química , Células Hep G2 , Humanos , Morus/química , Casca de Planta/química , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Terpenos/química
11.
Arch Pharm Res ; 41(6): 677-689, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29804278

RESUMO

Cassia obtusifolia L. seed is one of the most popular traditional Chinese medicine for mutagenicity, genotoxicity, hepatotoxicity, and acute inflammatory diseases. We evaluated the hepatoprotective activity of anthraquinone and naphthopyrone glycosides isolated from the butanol fraction of C. obtusifolia seeds and explored their effects on cell signaling pathways. Continuous chromatographic separation led to the isolation of 1-desmethylaurantio-obtusin 2-O-ß-D-glucopyranoside (1), rubrofusarin 6-O-ß-D-apiofuranosyl-(1 → 6)-O-ß-D-glucopyranoside (2) and rubrofusarin 6-O-ß-gentiobioside (3). All glycosides were non-toxic at concentrations up to 80 µM. The increased intracellular reactive oxygen species (ROS) and decreased glutathione levels observed after tert-butylhydroperoxide (t-BHP) intoxication were ameliorated by all three glycosides, with compound 3 being the most active. Pretreatment with the three glycosides increased nuclear factor erythroid-2-related factor 2 (Nrf2)-mediated heme oxidase-1 (HO-1) expression. All the glycosides enhanced the phosphorylation of c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK), and the dephosphorylation of p38. The protective effects of the anthraquinone and naphthopyrone glycosides against t-BHP-induced oxidative damage in human liver-derived HepG2 cells were due to the prevention of ROS generation and up-regulated activity of HO-1 via Nrf2 activation and modulation of the JNK/ERK/MAPK signaling pathway. The data indicate the potential of these compounds as hepatoprotective agents in pharmaceuticals and/or nutraceuticals.


Assuntos
Antioxidantes/farmacologia , Cassia/química , Glicosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antraquinonas/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Heme Oxigenase-1/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Pironas/química , Espécies Reativas de Oxigênio/metabolismo , Sementes/química , Regulação para Cima , terc-Butil Hidroperóxido/toxicidade
12.
Comput Biol Chem ; 74: 273-285, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29679864

RESUMO

The rhizome of Salvia miltiorrhiza has emerged as a rich source of natural therapeutic agents, and its several compounds are supposed to exhibit favorable effects on Alzheimer's disease (AD). The present work investigate the anti-AD potentials of 12 tanshinones, three salvianolic acids and three caffeic acid derivatives from S. miltiorrhiza via the inhibition of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). Among the tested compounds, deoxyneocryptotanshinone (1), salvianolic acid A (13) and salvianolic acid C (15) displayed good inhibitory effect on BACE1 with IC50 values of 11.53 ±â€¯1.13, 13.01 ±â€¯0.32 and 9.18 ±â€¯0.03 µM, respectively. Besides this, enzyme kinetic analysis on BACE1 revealed 13, a competitive type inhibitor while 1 and 15 showed mixed-type inhibition. Furthermore, molecular docking simulation displayed negative binding energies (AutoDock 4.2.6 = -10.0 to -7.1 kcal/mol) of 1, 13, and 15 for BACE1, indicating these compounds bound tightly to the active site of the enzyme with low energy and high affinity. The results of the present study clearly demonstrate that S. miltiorrhiza and its constituents have potential anti-AD activity and can be used as a therapeutic agent for the treatment of AD.


Assuntos
Abietanos/farmacologia , Alcenos/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Biologia Computacional , Inibidores Enzimáticos/farmacologia , Lamiaceae/química , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Alcenos/química , Alcenos/isolamento & purificação , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Polifenóis/química , Polifenóis/isolamento & purificação , Relação Estrutura-Atividade
13.
Arch Pharm Res ; 40(11): 1314-1327, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29027136

RESUMO

Insulin resistance and protein tyrosine phosphatase 1B (PTP1B) overexpression are strongly associated with type 2 diabetes mellitus (T2DM), which is characterized by defects in insulin signaling and glucose intolerance. In a previous study, we demonstrated oligonol inhibits PTP1B and α-glucosidase related to T2DM. In this study, we examined the molecular mechanisms underlying the anti-diabetic effects of oligonol in insulin-resistant HepG2 cells. Glucose uptake was assessed using a fluorescent glucose tracer, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose, and the signaling pathway was investigated by western blotting. Oligonol significantly increased insulin-provoked glucose uptake and decreased PTP1B expression, followed by modulation of ERK phosphorylation. In addition, oligonol activated insulin receptor substrate 1 by reducing phosphorylation at serine 307 and increasing that at tyrosine 895, and enhanced the phosphorylations of Akt and phosphatidylinositol 3-kinase. Interestingly, it also reduced the expression of two key enzymes of gluconeogenesis (glucose 6-phosphatase and phosphoenolpyruvate carboxykinase), attenuated oxidative stress by scavenging/inhibiting peroxynitrite, and reactive oxygen species (ROS) generation, and augmented the expression of nuclear factor kappa B. These findings suggest oligonol improved the insulin sensitivity of insulin-resistant HepG2 cells by attenuating the insulin signaling blockade and modulating glucose uptake and production. Furthermore, oligonol attenuated ROS-related inflammation and prevented oxidative damage in our in vitro model of type 2 diabetes. These result indicate oligonol has promising potential as a treatment for T2DM.


Assuntos
Catequina/análogos & derivados , Resistência à Insulina , Insulina/metabolismo , Fenóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Catequina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese , Glucose/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Bioorg Med Chem Lett ; 27(11): 2274-2280, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454670

RESUMO

Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5±2.6µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4±0.30µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6±0.49µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0±0.27µM). Among the glycosides, only prunin (IC50: 106.5±4.1µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavanonas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavanonas/química , Células Hep G2 , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA