Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38187708

RESUMO

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models. Both NeoAg vaccines and ICT induce expansion of intratumoral NeoAg-specific CD8 T cells, though the degree of expansion and acquisition of effector activity was much more substantial following NeoAg vaccination. Further, we found that NeoAg vaccines are particularly adept at inducing proliferating and stem-like NeoAg-specific CD8 T cells. Single cell T cell receptor (TCR) sequencing revealed that TCR clonotype expansion and diversity of NeoAg-specific CD8 T cells relates to their phenotype and functional state associated with specific immunotherapies employed. Effective NeoAg vaccines and ICT required both CD8 and CD4 T cells. While NeoAg vaccines and anti-PD-1 affected the CD4 T cell compartment, it was to less of an extent than observed with anti-CTLA-4, which notably induced ICOS+Bhlhe40+ Th1-like CD4 T cells and, when combined with anti-PD-1, a small subset of Th2-like CD4 T cells. Although effective NeoAg vaccines or ICT expanded intratumoral M1-like iNOS+ macrophages, NeoAg vaccines expanded rather than suppressed (as observed with ICT) M2-like CX3CR1+CD206+ macrophages, associated with the vaccine adjuvant. Further, combining NeoAg vaccination with ICT induced superior efficacy compared to either therapy in isolation, highlighting the utility of combining these modalities to eliminate cancer.

2.
Cancer Discov ; 13(12): 2566-2583, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37728660

RESUMO

The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE: This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/genética , Formiatos , Suplementos Nutricionais , Microambiente Tumoral
3.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432393

RESUMO

Immune-related adverse events (irAEs) are a notable complication of PD-1 cancer immunotherapy. A better understanding of how these iatrogenic diseases compare with naturally arising autoimmune diseases is needed for treatment and monitoring of irAEs. We identified differences in anti-PD-1-induced type 1 diabetes (T1D) and spontaneous T1D in non-obese diabetic (NOD) mice by performing single-cell RNA-seq and TCR-seq on T cells from the pancreas, pancreas-draining lymph node (pLN), and blood of mice with PD-1-induced T1D or spontaneous T1D. In the pancreas, anti-PD-1 resulted in expansion of terminally exhausted/effector-like CD8+ T cells, an increase in T-bethi CD4+FoxP3- T cells, and a decrease in memory CD4+FoxP3- and CD8+ T cells in contrast to spontaneous T1D. Notably, anti-PD-1 caused increased TCR sharing between the pancreas and the periphery. Moreover, T cells in the blood of anti-PD-1-treated mice expressed markers that differed from spontaneous T1D, suggesting that the blood may provide a window to monitor irAEs rather than relying exclusively on the autoimmune target organ.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Camundongos , Camundongos Endogâmicos NOD , Pâncreas , Fatores de Transcrição Forkhead , Receptores de Antígenos de Linfócitos T
4.
Nat Rev Immunol ; 23(12): 807-823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37253877

RESUMO

Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Memória Imunológica , Imunoterapia , Biologia , Microambiente Tumoral
5.
Cancer Immunol Res ; 10(8): 996-1012, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35706413

RESUMO

Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Microambiente Tumoral
6.
Nat Immunol ; 23(3): 446-457, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35177831

RESUMO

T cells acquire a regulatory phenotype when their T cell antigen receptors (TCRs) experience an intermediate- to high-affinity interaction with a self-peptide presented via the major histocompatibility complex (MHC). Using TCRß sequences from flow-sorted human cells, we identified TCR features that promote regulatory T cell (Treg) fate. From these results, we developed a scoring system to quantify TCR-intrinsic regulatory potential (TiRP). When applied to the tumor microenvironment, TiRP scoring helped to explain why only some T cell clones maintained the conventional T cell (Tconv) phenotype through expansion. To elucidate drivers of these predictive TCR features, we then examined the two elements of the Treg TCR ligand separately: the self-peptide and the human MHC class II molecule. These analyses revealed that hydrophobicity in the third complementarity-determining region (CDR3ß) of the TCR promotes reactivity to self-peptides, while TCR variable gene (TRBV gene) usage shapes the TCR's general propensity for human MHC class II-restricted activation.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , Linhagem da Célula , Regiões Determinantes de Complementaridade/genética , Peptídeos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T Reguladores
7.
Trends Immunol ; 43(3): 180-194, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090787

RESUMO

The T cell receptor (TCR) endows T cells with antigen specificity and is central to nearly all aspects of T cell function. Each naïve T cell has a unique TCR sequence that is stably maintained during cell division. In this way, the TCR serves as a molecular barcode that tracks processes such as migration, differentiation, and proliferation of T cells. Recent technological advances have enabled sequencing of the TCR from single cells alongside deep molecular phenotypes on an unprecedented scale. In this review, we discuss strengths and limitations of TCR sequences as molecular barcodes and their application to study immune responses following Programmed Death-1 (PD-1) blockade in cancer. Additionally, we consider applications of TCR data beyond use as a barcode.


Assuntos
Autoimunidade , Neoplasias , Autoimunidade/genética , Humanos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
8.
Immunity ; 54(10): 2338-2353.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534439

RESUMO

In tumors, a subset of CD8+ T cells expressing the transcription factor TCF-1 drives the response to immune checkpoint blockade. We examined the mechanisms that maintain these cells in an autochthonous model of lung adenocarcinoma. Longitudinal sampling and single-cell sequencing of tumor-antigen specific TCF-1+ CD8+ T cells revealed that while intratumoral TCF-1+ CD8+ T cells acquired dysfunctional features and decreased in number as tumors progressed, TCF-1+ CD8+ T cell frequency in the tumor draining LN (dLN) remained stable. Two discrete intratumoral TCF-1+ CD8+ T cell subsets developed over time-a proliferative SlamF6+ subset and a non-cycling SlamF6- subset. Blocking dLN egress decreased the frequency of intratumoral SlamF6+ TCF-1+ CD8+ T cells. Conventional type I dendritic cell (cDC1) in dLN decreased in number with tumor progression, and Flt3L+anti-CD40 treatment recovered SlamF6+ T cell frequencies and decreased tumor burden. Thus, cDC1s in tumor dLN maintain a reservoir of TCF-1+ CD8+ T cells and their decrease contributes to failed anti-tumor immunity.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Linfonodos/imunologia , Fator 1 de Transcrição de Linfócitos T/imunologia , Animais , Camundongos , Subpopulações de Linfócitos T/imunologia
9.
Nat Immunol ; 22(7): 809-819, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34140679

RESUMO

CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade , Linfócitos T CD8-Positivos/imunologia , Doenças Transmissíveis/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Epigênese Genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
10.
Semin Immunol ; 52: 101480, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006473

RESUMO

The PD-1 pathway is a cornerstone in immune regulation. While the PD-1 pathway has received considerable attention for its role in contributing to the maintenance of T cell exhaustion in chronic infection and cancer, the PD-1 pathway plays diverse roles in regulating host immunity beyond T cell exhaustion. Here, we discuss emerging concepts in the PD-1 pathway, including (1) the impact of PD-1 inhibitors on diverse T cell differentiation states including effector and memory T cell development during acute infection, as well as T cell exhaustion during chronic infection and cancer, (2) the role of PD-1 in regulating Treg cells, NK cells, and ILCs, and (3) the functions of PD-L1/B7-1 and PD-L2/RGMb/neogenin interactions. We then discuss the emerging use of neoadjuvant PD-1 blockade in the treatment of early-stage cancers and how the timing of PD-1 blockade may improve clinical outcomes. The diverse binding partners of PD-1 and its associated ligands, broad expression patterns of the receptors and ligands, differential impact of PD-1 modulation on cells depending on location and state of differentiation, and timing of PD-1 blockade add additional layers of complexity to the PD-1 pathway, and are important considerations for improving the efficacy and safety of PD-1 pathway therapeutics.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Neoplasias/terapia
11.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33651880

RESUMO

The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA and TCR sequencing to detect and characterize "tumor-matching" (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.


Assuntos
Adenocarcinoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Melanoma/sangue , Melanoma/imunologia , Análise de Célula Única/métodos , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/imunologia , Adenocarcinoma/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma
12.
Sci Transl Med ; 13(581)2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597266

RESUMO

Although immune checkpoint inhibitors (ICIs), such as anti-programmed cell death protein-1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+ T cell populations specific for melanocyte antigens was observed only in patients who responded to anti-PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti-PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti-PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Antígenos de Neoplasias , Epitopos , Humanos , Melanócitos , Melanoma/terapia , Camundongos
13.
Proc Natl Acad Sci U S A ; 117(38): 23684-23694, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907939

RESUMO

Immune checkpoint blockade (ICB) is efficacious in many diverse cancer types, but not all patients respond. It is important to understand the mechanisms driving resistance to these treatments and to identify predictive biomarkers of response to provide best treatment options for all patients. Here we introduce a resection and response-assessment approach for studying the tumor microenvironment before or shortly after treatment initiation to identify predictive biomarkers differentiating responders from nonresponders. Our approach builds on a bilateral tumor implantation technique in a murine metastatic breast cancer model (E0771) coupled with anti-PD-1 therapy. Using our model, we show that tumors from mice responding to ICB therapy had significantly higher CD8+ T cells and fewer Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs) at early time points following therapy initiation. RNA sequencing on the intratumoral CD8+ T cells identified the presence of T cell exhaustion pathways in nonresponding tumors and T cell activation in responding tumors. Strikingly, we showed that our derived response and resistance signatures significantly segregate patients by survival and associate with patient response to ICB. Furthermore, we identified decreased expression of CXCR3 in nonresponding mice and showed that tumors grown in Cxcr3-/- mice had an elevated resistance rate to anti-PD-1 treatment. Our findings suggest that the resection and response tumor model can be used to identify response and resistance biomarkers to ICB therapy and guide the use of combination therapy to further boost the antitumor efficacy of ICB.


Assuntos
Neoplasias da Mama , Imunoterapia , Neoplasias Mamárias Experimentais , Microambiente Tumoral/imunologia , Animais , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Transcriptoma/imunologia
14.
Cell Rep ; 31(13): 107827, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610128

RESUMO

The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais , Administração Intranasal , Animais , Morte Celular/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Especificidade da Espécie
15.
Trends Immunol ; 40(6): 511-523, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31053497

RESUMO

Oncology has recently undergone a revolutionary change with widespread adoption of immunotherapy for many cancers. Immunotherapy using monoclonal antibodies against checkpoint molecules, including programmed death (PD)-1, PD ligand (PD-L)1, and cytotoxic T lymphocyte-associated antigen (CTLA)-4, is effective in a significant subset of patients. However, immune-related adverse events (irAEs) have emerged as frequent complications of checkpoint blockade, likely due to the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. As immunotherapy becomes more common, a better understanding of the etiology of irAEs and ways to limit these events is needed. At the same time, studying these new therapy-related disorders provides an opportunity to better understand naturally occurring human autoimmune and inflammatory disorders, with the potential to improve therapies for cancer and autoimmune diseases.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Imunoterapia/efeitos adversos , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/uso terapêutico , Autoimunidade , Biomarcadores Tumorais , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunomodulação/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Avaliação de Resultados da Assistência ao Paciente , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
16.
Nat Rev Immunol ; 18(3): 153-167, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28990585

RESUMO

T cell activation is a highly regulated process involving peptide-MHC engagement of the T cell receptor and positive costimulatory signals. Upon activation, coinhibitory 'checkpoints', including programmed cell death protein 1 (PD1), become induced to regulate T cells. PD1 has an essential role in balancing protective immunity and immunopathology, homeostasis and tolerance. However, during responses to chronic pathogens and tumours, PD1 expression can limit protective immunity. Recently developed PD1 pathway inhibitors have revolutionized cancer treatment for some patients, but the majority of patients do not show complete responses, and adverse events have been noted. This Review discusses the diverse roles of the PD1 pathway in regulating immune responses and how this knowledge can improve cancer immunotherapy as well as restore and/or maintain tolerance during autoimmunity and transplantation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Ativação Linfocitária/imunologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Autoimunidade/imunologia , Linfócitos B/imunologia , Humanos , Células Matadoras Naturais/imunologia , Transdução de Sinais/imunologia
17.
Nature ; 545(7652): 60-65, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28397821

RESUMO

Despite the success of monotherapies based on blockade of programmed cell death 1 (PD-1) in human melanoma, most patients do not experience durable clinical benefit. Pre-existing T-cell infiltration and/or the presence of PD-L1 in tumours may be used as indicators of clinical response; however, blood-based profiling to understand the mechanisms of PD-1 blockade has not been widely explored. Here we use immune profiling of peripheral blood from patients with stage IV melanoma before and after treatment with the PD-1-targeting antibody pembrolizumab and identify pharmacodynamic changes in circulating exhausted-phenotype CD8 T cells (Tex cells). Most of the patients demonstrated an immunological response to pembrolizumab. Clinical failure in many patients was not solely due to an inability to induce immune reinvigoration, but rather resulted from an imbalance between T-cell reinvigoration and tumour burden. The magnitude of reinvigoration of circulating Tex cells determined in relation to pretreatment tumour burden correlated with clinical response. By focused profiling of a mechanistically relevant circulating T-cell subpopulation calibrated to pretreatment disease burden, we identify a clinically accessible potential on-treatment predictor of response to PD-1 blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Carga Tumoral/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Antígeno Ki-67/imunologia , Antígeno Ki-67/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/patologia , Estadiamento de Neoplasias , Fenótipo , Resultado do Tratamento
18.
Cell ; 167(6): 1540-1554.e12, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912061

RESUMO

Therapeutic blocking of the PD1 pathway results in significant tumor responses, but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Melanoma/imunologia , Melanoma/terapia , Radioimunoterapia , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Humanos , Interferons/imunologia , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Camundongos , Transplante de Neoplasias , Fator de Transcrição STAT1 , Linfócitos T/imunologia
19.
Science ; 354(6316): 1160-1165, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789795

RESUMO

Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.


Assuntos
Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/genética , Epigênese Genética , Memória Imunológica/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/transplante , Linhagem da Célula/genética , Reprogramação Celular/imunologia , Feminino , Redes Reguladoras de Genes , Imunoterapia , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica
20.
Artigo em Inglês | MEDLINE | ID: mdl-27656680

RESUMO

Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells. Clinical evidence and studies in non-obese diabetic (NOD) mice suggest that insulin is a major autoantigen. With this in mind, we developed insulin B10-23:IAg7 tetramer reagents to track insulin-specific CD4+ T cells in mice and interrogated the role of Programmed death-1 (PD-1) for peripheral tolerance. PD-1 is a T cell inhibitory receptor necessary to maintain tolerance and prevent T1D in NOD mice. PD-1 pathway inhibitors are increasingly used in the clinic for treating malignancies, and while many patients benefit, some develop adverse autoimmune events, including T1D. We therefore sought to understand the role of PD-1 in maintaining islet-specific tolerance in diabetes-resistant strains. B6.g7 mice express the same MHC Class II allele as NOD mice, have predominantly naïve insulin-specific CD4+ T cells in the periphery, and remain diabetes-free even after PD-1 pathway blockade. Here, we examined the trafficking potential of insulin-specific CD4+ T cells in NOD and B6.g7 mice with or without anti-PD-L1 treatment, and found that PD-L1 blockade preferentially increased the number of CD44highCXCR3+ insulin-specific cells in NOD but not B6.g7 mice. Additionally, we investigated whether pancreatic islets in NOD and B6.g7 mice expressed CXCL10, a lymphocyte homing chemokine and ligand for CXCR3. Anti-PD-L1 treated and control NOD mice had detectable CXCL10 expression in the islets, while B6.g7 islets did not. These data suggest that islet tolerance may be in part attributed to the pancreatic environment and in the absence of pancreas inflammation, chemotactic cytokines may be missing. This, together with our previous data showing that PD-1 pathway blockade preferentially affects effector but not anergic self-specific T cells has implications for the use of checkpoint blockade in treating tumor patients. Our work suggests that determining tumor- and self-specific CD4+ T cell activation status (naïve, effector or anergic) prior to initiation of immunotherapy would likely help to stratify individuals who would benefit from this therapy versus those who might have adverse effects or incomplete tumor control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA