Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 1909-1935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424231

RESUMO

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Metáfase , Cinesinas/genética , Células HeLa , Mitose , Segregação de Cromossomos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
2.
Plants (Basel) ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140499

RESUMO

Research on bryophyte phytochemistry has revealed the presence of different phytochemicals like fatty acids, terpenoids, small phenolic molecules, etc. Small phenolic molecules, i.e., bibenzyls (of two aromatic rings) and bisbibenzyls (four aromatic rings), are unique signature molecules of liverworts. The first bisbibenzyls marchantin A and riccardin A were discovered in two consecutive years, i.e., 1982 and 1983, respectively, by Asakawa and coworkers. Since then, about 70 bisbibenzyls have been reported. These molecules are characterized and identified using different spectroscopic techniques and surveyed for different bioactivity and structure-activity relations. Biochemistry is determined by the season, geography, and environment. In this review, quantitative and qualitative information on bibenzyls and bisbibenzyl compounds and their distribution in different liverworts across, geographies along withtraditional to advanced extraction methods, and characterization techniques are summarized. Also, a comprehensive account of characteristic spectra of different bisbibenzyl compounds, their subtypes, and their basic skeleton patterns are compared. A comprehensive table is provided here for the first time presenting the quantity of bibenzyls, bisbenzyls, and their derivatives found in bryophytes, mentioning the spectroscopic data and mass profiles of the compounds. The significance of these compounds in different bioactivities like antibiotic, antioxidative, antitumor, antivenomous, anti-influenza, insect antifeedant, cytotoxic, and anticancerous activities are surveyed and critically enumerated.

3.
Phys Rev E ; 108(1-1): 014401, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583222

RESUMO

Saccharomyces cerevisiae and Candida albicans, the two well-known human pathogens, can be found in all three morphologies, i.e., yeast, pseudohyphae, and true hyphae. The cylindrical daughter-bud (germ tube) grows very long for true hyphae, and the cell cycle is delayed compared to the other two morphologies. The place of the nuclear division is specific for true hyphae determined by the position of the septin ring. However, the septin ring can localize anywhere inside the germ tube, unlike the mother-bud junction in budding yeast. Since the nucleus often migrates a long path in the hyphae, the underlying mechanism must be robust for executing mitosis in a timely manner. We explore the mechanism of nuclear migration through hyphae in light of mechanical interactions between astral microtubules and the cell cortex. We report that proper migration through constricted hyphae requires a large dynein pull applied on the astral microtubules from the hyphal cortex. This is achieved when the microtubules frequently slide along the hyphal cortex so that a large population of dyneins actively participate, pulling on them. Simulation shows timely migration when the dyneins from the mother cortex do not participate in pulling on the microtubules. These findings are robust for long migration and positioning of the nucleus in the germ tube at the septin ring.


Assuntos
Dineínas , Proteínas Fúngicas , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dineínas/metabolismo , Hifas/metabolismo , Septinas/metabolismo , Mitose , Saccharomyces cerevisiae/metabolismo , Divisão do Núcleo Celular , Microtúbulos/metabolismo
4.
Biophys J ; 119(2): 434-447, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32610087

RESUMO

To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.


Assuntos
Cinetocoros , Fuso Acromático , Animais , Centrossomo , Análise por Conglomerados , Microtúbulos , Mitose
5.
PLoS Genet ; 15(2): e1007959, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763303

RESUMO

The nuclear division takes place in the daughter cell in the basidiomycetous budding yeast Cryptococcus neoformans. Unclustered kinetochores gradually cluster and the nucleus moves to the daughter bud as cells enter mitosis. Here, we show that the evolutionarily conserved Aurora B kinase Ipl1 localizes to the nucleus upon the breakdown of the nuclear envelope during mitosis in C. neoformans. Ipl1 is shown to be required for timely breakdown of the nuclear envelope as well. Ipl1 is essential for viability and regulates structural integrity of microtubules. The compromised stability of cytoplasmic microtubules upon Ipl1 depletion results in a significant delay in kinetochore clustering and nuclear migration. By generating an in silico model of mitosis, we previously proposed that cytoplasmic microtubules and cortical dyneins promote atypical nuclear division in C. neoformans. Improving the previous in silico model by introducing additional parameters, here we predict that an effective cortical bias generated by cytosolic Bim1 and dynein regulates dynamics of kinetochore clustering and nuclear migration. Indeed, in vivo alterations of Bim1 or dynein cellular levels delay nuclear migration. Results from in silico model and localization dynamics by live cell imaging suggests that Ipl1 spatio-temporally influences Bim1 or/and dynein activity along with microtubule stability to ensure timely onset of nuclear division. Together, we propose that the timely breakdown of the nuclear envelope by Ipl1 allows its own nuclear entry that helps in spatio-temporal regulation of nuclear division during semi-open mitosis in C. neoformans.


Assuntos
Aurora Quinase B/metabolismo , Divisão do Núcleo Celular/fisiologia , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Transporte Ativo do Núcleo Celular , Aurora Quinase B/genética , Divisão do Núcleo Celular/genética , Segregação de Cromossomos , Cromossomos Fúngicos/genética , Simulação por Computador , Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Dineínas/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Mutação , Análise Espaço-Temporal
6.
Mol Biol Cell ; 26(22): 3954-65, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310442

RESUMO

High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division.


Assuntos
Microtúbulos/metabolismo , Modelos Biológicos , Saccharomycetales/citologia , Segregação de Cromossomos , Citoplasma/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Mitose , Saccharomycetales/metabolismo , Fuso Acromático/metabolismo
7.
Mol Biol Cell ; 23(3): 401-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130796

RESUMO

Spindle assembly, establishment of kinetochore attachment, and sister chromatid separation must occur during mitosis in a highly coordinated fashion to ensure accurate chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to allow interaction between microtubules of the mitotic spindle and the kinetochores. It was previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome separation and that centrosome separation can be either complete at the time of NEB or can be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attachment or chromosome segregation. We used a combination of experimental and computational approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not "search" the entire cellular space, leading to formation of large numbers of syntelic attachments, which can be an intermediate stage in the formation of merotelic kinetochores.


Assuntos
Centrossomo/fisiologia , Segregação de Cromossomos , Mitose , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Simulação por Computador , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Cinetocoros/fisiologia , Fatores de Tempo
8.
Curr Biol ; 19(21): 1833-8, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19836236

RESUMO

Mitotic spindle assembly requires the combined activity of various molecular motor proteins, including Eg5 and dynein. Together, these motors generate antagonistic forces during mammalian bipolar spindle assembly; what remains unknown, however, is how these motors are functionally coordinated such that antagonism is possible. Given that Eg5 generates an outward force by crosslinking and sliding apart antiparallel microtubules (MTs), we explored the possibility that dynein generates an inward force by likewise sliding antiparallel MTs. We reasoned that antiparallel overlap, and therefore the magnitude of a dynein-mediated force, would be inversely proportional to the initial distance between centrosomes. To capitalize on this relationship, we utilized a nocodazole washout assay to mimic spindle assembly. We found that Eg5 inhibition led to either monopolar or bipolar spindle formation, depending on whether centrosomes were initially separated by less than or greater than 5.5 microm, respectively. Mathematical modeling predicted this same spindle bistability in the absence of functional Eg5 and required dynein acting on antiparallel MTs to do so. Our results suggest that dynein functionally coordinates with Eg5 by crosslinking and sliding antiparallel MTs, a novel role for dynein within the framework of spindle assembly.


Assuntos
Dineínas/fisiologia , Cinesinas/antagonistas & inibidores , Microtúbulos/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Centrossomo/metabolismo , Dineínas/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Suínos
9.
Proc Natl Acad Sci U S A ; 106(37): 15708-13, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717443

RESUMO

The mitotic spindle self-assembles in prometaphase by a combination of centrosomal pathway, in which dynamically unstable microtubules search in space until chromosomes are captured, and a chromosomal pathway, in which microtubules grow from chromosomes and focus to the spindle poles. Quantitative mechanistic understanding of how spindle assembly can be both fast and accurate is lacking. Specifically, it is unclear how, if at all, chromosome movements and combining the centrosomal and chromosomal pathways affect the assembly speed and accuracy. We used computer simulations and high-resolution microscopy to test plausible pathways of spindle assembly in realistic geometry. Our results suggest that an optimal combination of centrosomal and chromosomal pathways, spatially biased microtubule growth, and chromosome movements and rotations is needed to complete prometaphase in 10-20 min while keeping erroneous merotelic attachments down to a few percent. The simulations also provide kinetic constraints for alternative error correction mechanisms, shed light on the dual role of chromosome arm volume, and compare well with experimental data for bipolar and multipolar HT-29 colorectal cancer cells.


Assuntos
Cromossomos/fisiologia , Cromossomos/ultraestrutura , Simulação por Computador , Modelos Biológicos , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Movimento , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA