Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442018

RESUMO

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Assuntos
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribose , Humanos , RNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA , Ataxia Telangiectasia/genética , Reparo do DNA , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo
2.
DNA Repair (Amst) ; 135: 103647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377644

RESUMO

Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.


Assuntos
Ataxia Telangiectasia , Animais , Humanos , Criança , Ataxia Telangiectasia/genética , Cerebelo , Encéfalo , Dano ao DNA , DNA de Cadeia Simples
3.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36138131

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Assuntos
Carcinoma Ductal Pancreático , Proteína Homóloga a MRE11 , Metiltransferases , Neoplasias Pancreáticas , Adenosina Difosfato Ribose , Carcinoma Ductal Pancreático/tratamento farmacológico , DNA , Exonucleases/genética , Humanos , Proteína Homóloga a MRE11/genética , Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , RNA , Mutações Sintéticas Letais , Neoplasias Pancreáticas
4.
DNA Repair (Amst) ; 105: 103155, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116476

RESUMO

The accumulation of unrepaired DNA lesions is associated with many pathological outcomes in humans, particularly in neurodegenerative diseases and in normal aging. Evidence supporting a causal role for DNA damage in the onset and progression of neurodegenerative disease has come from rare human patients with mutations in DNA damage response genes as well as from model organisms; however, the generality of this relationship in the normal population is unclear. In addition, the relevance of DNA damage in the context of proteotoxic stress-the widely accepted paradigm for pathology during neurodegeneration-is not well understood. Here, observations supporting intertwined roles of DNA damage and proteotoxicity in aging-related neurological outcomes are reviewed, with particular emphasis on recent insights into the relationships between DNA repair and autophagy, the ubiquitin proteasome system, formation of protein aggregates, poly-ADP-ribose polymerization, and transcription-driven DNA lesions.


Assuntos
Dano ao DNA , Reparo do DNA , Proteostase , Animais , Autofagia , DNA/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Poli Adenosina Difosfato Ribose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
5.
Mol Cell ; 81(7): 1515-1533.e5, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571423

RESUMO

Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Simples , Proteína Homóloga a MRE11/deficiência , Neocórtex/metabolismo , Poli ADP Ribosilação , Proteostase , Ataxias Espinocerebelares/metabolismo , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Neocórtex/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
6.
Dev Cell ; 56(4): 461-477.e7, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33621493

RESUMO

Homology-directed repair (HDR) safeguards DNA integrity under various forms of stress, but how HDR protects replicating genomes under extensive metabolic alterations remains unclear. Here, we report that besides stalling replication forks, inhibition of ribonucleotide reductase (RNR) triggers metabolic imbalance manifested by the accumulation of increased reactive oxygen species (ROS) in cell nuclei. This leads to a redox-sensitive activation of the ATM kinase followed by phosphorylation of the MRE11 nuclease, which in HDR-deficient settings degrades stalled replication forks. Intriguingly, nascent DNA degradation by the ROS-ATM-MRE11 cascade is also triggered by hypoxia, which elevates signaling-competent ROS and attenuates functional HDR without arresting replication forks. Under these conditions, MRE11 degrades daughter-strand DNA gaps, which accumulate behind active replisomes and attract error-prone DNA polymerases to escalate mutation rates. Thus, HDR safeguards replicating genomes against metabolic assaults by restraining mutagenic repair at aberrantly processed nascent DNA. These findings have implications for cancer evolution and tumor therapy.


Assuntos
Replicação do DNA , Genoma Humano , Metabolismo , Reparo de DNA por Recombinação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA2/deficiência , Proteína BRCA2/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Proteína Homóloga a MRE11/metabolismo , Modelos Biológicos , Mutação/genética , Neoplasias/genética , Neoplasias/patologia , Polimerização , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Methods Mol Biol ; 2153: 59-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32840772

RESUMO

DNA double-strand break (DSB) end resection initiates homologous recombination (HR) and is critical for genomic stability. DSB resection has been monitored indirectly in mammalian cells using detection of protein foci or BrdU foci formation, which is dependent on single-stranded DNA (ssDNA) products of resection. Here we describe a quantitative PCR (qPCR)-based assay to directly measure levels of ssDNA intermediates generated by resection at specific DSB sites in human cells, which is more quantitative and precise with respect to the extent and efficiency of resection compared with previous methods. This assay, excluding the time for making the stable cell line expressing the restriction enzyme AsiSI fused to the estrogen receptor hormone-binding domain (ER-AsiSI), can be completed within 3 days.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas de Restrição do DNA/genética , Receptores de Estrogênio/genética , Reparo de DNA por Recombinação , Sítios de Ligação , Técnicas de Cultura de Células , Enzimas de Restrição do DNA/metabolismo , Instabilidade Genômica , Células HEK293 , Humanos , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
8.
Cancer Res ; 81(2): 426-437, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239428

RESUMO

ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Dano ao DNA , Mutação , Neoplasias/genética , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Estimativa de Kaplan-Meier , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/metabolismo
9.
PLoS Biol ; 18(7): e3000606, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687490

RESUMO

The 70 kDa heat shock protein (HSP70) family of chaperones are the front line of protection from stress-induced misfolding and aggregation of polypeptides in most organisms and are responsible for promoting the stability, folding, and degradation of clients to maintain cellular protein homeostasis. Here, we demonstrate quantitative identification of HSP70 and 71 kDa heat shock cognate (HSC70) clients using a ubiquitin-mediated proximity tagging strategy and show that, despite their high degree of similarity, these enzymes have largely nonoverlapping specificities. Both proteins show a preference for association with newly synthesized polypeptides, but each responds differently to changes in the stoichiometry of proteins in obligate multi-subunit complexes. In addition, expression of an amyotrophic lateral sclerosis (ALS)-associated superoxide dismutase 1 (SOD1) mutant protein induces changes in HSP70 and HSC70 client association and aggregation toward polypeptides with predicted disorder, indicating that there are global effects from a single misfolded protein that extend to many clients within chaperone networks. Together these findings show that the ubiquitin-activated interaction trap (UBAIT) fusion system can efficiently isolate the complex interactome of HSP chaperone family proteins under normal and stress conditions.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteoma/metabolismo , Linhagem Celular , Humanos , Mutação/genética , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Especificidade por Substrato , Ubiquitina/metabolismo
10.
Mol Cell Biol ; 40(12)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32205407

RESUMO

Maintenance of protein homeostasis in eukaryotes under normal growth and stress conditions requires the functions of Hsp70 chaperones and associated cochaperones. Here, we investigate an evolutionarily conserved serine phosphorylation that occurs at the site of communication between the nucleotide-binding and substrate-binding domains of Hsp70. Ser151 phosphorylation in yeast Hsp70 (Ssa1) is promoted by cyclin-dependent kinase (Cdk1) during normal growth. Phosphomimetic substitutions at this site (S151D) dramatically downregulate heat shock responses, a result conserved with HSC70 S153 in human cells. Phosphomimetic forms of Ssa1 also fail to relocalize in response to starvation conditions, do not associate in vivo with Hsp40 cochaperones Ydj1 and Sis1, and do not catalyze refolding of denatured proteins in vitro in cooperation with Ydj1 and Hsp104. Despite these negative effects on HSC70/HSP70 function, the S151D phosphomimetic allele promotes survival of heavy metal exposure and suppresses the Sup35-dependent [PSI+ ] prion phenotype, consistent with proposed roles for Ssa1 and Hsp104 in generating self-nucleating seeds of misfolded proteins. Taken together, these results suggest that Cdk1 can downregulate Hsp70 function through phosphorylation of this site, with potential costs to overall chaperone efficiency but also advantages with respect to reduction of metal-induced and prion-dependent protein aggregate production.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Linhagem Celular , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSP70/química , Humanos , Metais Pesados/metabolismo , Fosforilação , Agregados Proteicos , Desnaturação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteostase , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Estresse Fisiológico
11.
Nat Commun ; 11(1): 857, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051414

RESUMO

Meiotic recombination is initiated by SPO11-induced double-strand breaks (DSBs). In most mammals, the methyltransferase PRDM9 guides SPO11 targeting, and the ATM kinase controls meiotic DSB numbers. Following MRE11 nuclease removal of SPO11, the DSB is resected and loaded with DMC1 filaments for homolog invasion. Here, we demonstrate the direct detection of meiotic DSBs and resection using END-seq on mouse spermatocytes with low sample input. We find that DMC1 limits both minimum and maximum resection lengths, whereas 53BP1, BRCA1 and EXO1 play surprisingly minimal roles. Through enzymatic modifications to END-seq, we identify a SPO11-bound meiotic recombination intermediate (SPO11-RI) present at all hotspots. We propose that SPO11-RI forms because chromatin-bound PRDM9 asymmetrically blocks MRE11 from releasing SPO11. In Atm-/- spermatocytes, trapped SPO11 cleavage complexes accumulate due to defective MRE11 initiation of resection. Thus, in addition to governing SPO11 breakage, ATM and PRDM9 are critical local regulators of mammalian SPO11 processing.


Assuntos
Endodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Espermatócitos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
12.
Genes Dev ; 33(23-24): 1751-1774, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753913

RESUMO

Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.


Assuntos
Instabilidade Genômica , Estruturas R-Loop , Reparo de DNA por Recombinação/genética , Fatores de Transcrição/genética , Acetilação , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Células HEK293 , Células HeLa , Humanos , Transativadores/metabolismo , Fatores de Transcrição/análise , Ubiquitinação , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
13.
Crit Rev Biochem Mol Biol ; 54(4): 371-384, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31577154

RESUMO

The repair of DNA double-strand breaks occurs through a series of defined steps that are evolutionarily conserved and well-understood in most experimental organisms. However, it is becoming increasingly clear that repair does not occur in isolation from other DNA transactions. Transcription of DNA produces topological changes, RNA species, and RNA-dependent protein complexes that can dramatically influence the efficiency and outcomes of DNA double-strand break repair. The transcription-associated history of several double-strand break repair factors is reviewed here, with an emphasis on their roles in regulating R-loops and the emerging role of R-loops in coordination of repair events. Evidence for nucleolytic processing of R-loops is also discussed, as well as the molecular tools commonly used to measure RNA-DNA hybrids in cells.


Assuntos
Reparo do DNA/genética , DNA/genética , Estruturas R-Loop/genética , RNA/genética , Transcrição Gênica , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Helicases/genética , Endodesoxirribonucleases/genética , Humanos , RNA Helicases/genética , Recombinação Genética
14.
Methods Mol Biol ; 2004: 269-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147924

RESUMO

The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Meiose/fisiologia
15.
Sci Signal ; 11(538)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991649

RESUMO

Mitochondria are integral to cellular energy metabolism and ATP production and are involved in regulating many cellular processes. Mitochondria produce reactive oxygen species (ROS), which not only can damage cellular components but also participate in signal transduction. The kinase ATM, which is mutated in the neurodegenerative, autosomal recessive disease ataxia-telangiectasia (A-T), is a key player in the nuclear DNA damage response. However, ATM also performs a redox-sensing function mediated through formation of ROS-dependent disulfide-linked dimers. We found that mitochondria-derived hydrogen peroxide promoted ATM dimerization. In HeLa cells, ATM dimers were localized to the nucleus and inhibited by the redox regulatory protein thioredoxin 1 (TRX1), suggesting the existence of a ROS-mediated, stress-signaling relay from mitochondria to the nucleus. ATM dimer formation did not affect its association with chromatin in the absence or presence of nuclear DNA damage, consistent with the separation of its redox and DNA damage signaling functions. Comparative analysis of U2OS cells expressing either wild-type ATM or the redox sensing-deficient C2991L mutant revealed that one function of ATM redox sensing is to promote glucose flux through the pentose phosphate pathway (PPP) by increasing the abundance and activity of glucose-6-phosphate dehydrogenase (G6PD), thereby increasing cellular antioxidant capacity. The PPP produces the coenzyme NADPH needed for a robust antioxidant response, including the regeneration of TRX1, indicating the existence of a regulatory feedback loop involving ATM and TRX1. We propose that loss of the mitochondrial ROS-sensing function of ATM may cause cellular ROS accumulation and oxidative stress in A-T.


Assuntos
Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mutação , Oxirredução , Multimerização Proteica , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo
16.
Cancer Cell ; 33(6): 1094-1110.e8, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29805078

RESUMO

Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Instabilidade Cromossômica/efeitos dos fármacos , Dano ao DNA , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Benzamidas/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Terapia de Alvo Molecular , Piridonas/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/genética
17.
Sci Signal ; 11(512)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317520

RESUMO

The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Estresse Oxidativo , Proteostase , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação , Células Tumorais Cultivadas
18.
Cell Rep ; 21(4): 979-993, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069605

RESUMO

Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.


Assuntos
Instabilidade Cromossômica , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência Conservada , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Linfócitos/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação
19.
Nucleic Acids Res ; 45(9): 5255-5268, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28369545

RESUMO

The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.


Assuntos
Domínio Catalítico , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Hidrolases Anidrido Ácido , Trifosfato de Adenosina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Hidrólise , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica
20.
Genes Dev ; 31(3): 260-274, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242625

RESUMO

Chromatin connects DNA damage response factors to sites of damaged DNA to promote the signaling and repair of DNA lesions. The histone H2A variants H2AX, H2AZ, and macroH2A represent key chromatin constituents that facilitate DNA repair. Through proteomic screening of these variants, we identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination (HR). ZMYM3 is recruited to DNA double-strand breaks through bivalent interactions with both histone and DNA components of the nucleosome. We show that ZMYM3 links the HR factor BRCA1 to damaged chromatin through specific interactions with components of the BRCA1-A subcomplex, including ABRA1 and RAP80. By regulating ABRA1 recruitment to damaged chromatin, ZMYM3 facilitates the fine-tuning of BRCA1 interactions with DNA damage sites and chromatin. Consistent with a role in regulating BRCA1 function, ZMYM3 deficiency results in impaired HR repair and genome instability. Thus, our work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Ósseas/metabolismo , Cromatina/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/genética , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HEK293 , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Osteossarcoma/genética , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA