Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906532

RESUMO

Arsenic (As) toxicity can generate reactive free radicals, which play an important role in the evolution of cardiomyopathy. The aim of this research is to see if sulforaphane (SFN) protects against As-induced heart damage, oxidative stress, and mitochondrial complex dysfunction via the PI3K/Akt/Nrf2 signaling pathway. The rats were placed into four groups, each with eight rats. Group 1: Normal rats (control group); Group 2: Treatment group (5 mg/kg body weight); Group 3: SFN+As-treatment group (80 mg/kg body weight + 5 mg/kg body weight); Group 4: SFN group only (80 mg/kg body weight). The swot will last 4 weeks. At the end of the intermission (28 days), all of the rats starved overnight and killed with cervical decapitation. As administration considerably (p < 0.05) inflated the extent of free radicals (O2-, OH-), lipoid peroxidation (malondialdehyde, 4-hydroxynonenal), lipoid profile (low-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol (VLDL-C), total cholesterol, triglyceride, and phospholipids), cardiac Troponin (cTnT&I), and Mitochondrial complex III. A noteworthy (p < 0.05) diminish the level of HDL-C, Mitochondrial complex I and II, enzymatic (superoxide dismutase, catalase, and glutathione peroxidase), and nonenzymatic antioxidant (glutathione and total sulfhydryl groups) and PI3k, Akt, and Nrf2 sequence in As treated rats. The western blot, real-time polymerase chain reaction, flowcytometric, and histology studies all corroborated the biochemical findings which revealed significant heart damage in rats. Pretreatment with SFN significantly (p < 0.05) reduced the invitro free radicals, lipid oxidative indicators, mitochondrial complex, lipid profiles, and increased phase II antioxidants in the heart. This result shows that dietary supplementation of SFN protects against As-induced cardiotoxicity via PI3k/Akt/Nrf2 pathway in rats.


Assuntos
Arsênio , Sulfóxidos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Isotiocianatos/farmacologia , Antioxidantes/farmacologia , Transdução de Sinais , Radicais Livres , Peso Corporal , Lipoproteínas LDL/metabolismo , Colesterol , Lipídeos
2.
RSC Med Chem ; 14(7): 1331-1343, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37484570

RESUMO

A new series of 8-nitroquinolone-based aromatic heterocyclic acyl hydrazones have been synthesised and characterised through various spectroscopic techniques. They were theoretically examined for molecular docking with various proteins related to the apoptosis of the non-small cell lung cancer cell line A549. The results indicate that the possible modes of interaction of all the synthesised compounds are compatible for use as anti-proliferative drugs. Also, the drug-likeness of the compounds was examined through theoretical ADMET analysis, which indicated good gastrointestinal absorption as well as low toxicity. Selected compounds were evaluated for their in vitro anti-cancer activity using A549, MCF-7 and HeLa cell lines through an MTT assay to determine cytotoxicity. Compounds 3c, 3a and 11c exhibited significant cytotoxicity towards A549 cells in the order of 3c (15.3 ± 0.7) > 3a (15.8 ± 0.1) > 11c (17.1 ± 0.2), whereas all the compounds show insignificant toxicity on normal human embryonic kidney cells up to a concentration of 200 µM. The best compounds among the series (3c and 11c) were chosen for further detection of apoptosis through fluorescence microscopic techniques using AO/EtBr and DAPI. The reduced DNA synthesis during the cell cycle was also investigated through flow cytometric techniques. The results indicate that the compounds possess significant anticancer properties due to the activation of the mitochondrial mediated intrinsic pathway.

3.
Sci Rep ; 11(1): 8837, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893349

RESUMO

Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Lawsonia (Planta)/química , Nanopartículas Metálicas/química , Controle de Mosquitos/métodos , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/crescimento & desenvolvimento , Anti-Infecciosos/efeitos adversos , Antineoplásicos/efeitos adversos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Análise Espectral/métodos , Difração de Raios X
4.
Toxicol Res (Camb) ; 9(3): 230-238, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32670554

RESUMO

Triple negative breast carcinoma (TNBC) is an aggressive form of cancer, with high rates of morbidity, mortality, poor prognosis and limited therapeutic options. The objective of the present study was to elaborate the anticancer activity of Troxerutin (TXN) in TNBC/MDA-MB-231 cells. Herein, we demonstrated the inhibitory effects of TXN on the breast cancer cell growth via induction of apoptosis. Mitochondrial membrane potential (∆Ψm), DNA damage and apoptotic nuclear changes were analyzed by flowcytometry, AO/EtBr and Hoechst staining, respectively. Furthermore, apoptotic protein and gene expressions were analyzed by western blot and reverse transcription polymerase chain reaction (RT-PCR), respectively. Our results indicated that TXN induces apoptosis as evidenced by inhibit the cell proliferation, enhanced apoptotic activation, altered mitochondrial membrane potential and elevated level of DNA damage in TNBC cells. Furthermore, the TXN inhibit anti-apoptotic protein expression with the subsequent upregulation of Cytochrome c, Caspase-9 and Caspase-3. Thus, TXN induces apoptosis in TNBC cells through inducing nuclear damage and altered apoptotic marker expressions. Therefore, TXN might be used as a potential therapeutic agent for the treatment of triple negative breast cancer.

5.
Int J Biol Macromol ; 130: 997-1008, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844461

RESUMO

The aim of the present investigation is to explore the innovative platform for the synthesis of plant-based nanoparticles, which contain biocompatible and biodegradable carrier of chitosan loaded with phloretin hydrophobic phytochemical applied as a stable anticancer agent. Treatment of cancer uses chemotherapeutic drugs as the cells are resistant to other drugs. However, the usage of therapeutic drug is limited by its poor solubility and low bioavailability. To overcome this problem, we fabricated the phloretin loaded chitosan nanoparticles (PhCsNPs) and physicochemical properties of PhCsNPs were characterized by FTIR, XRD, DLS, SEM and TEM. The findings indicated that the synthesized PhCsNPs were spherical and homogeneous in shape with the size distribution of 80-100 nm and exhibited stability in ultimate drug releasing profile. Further, we substantiated the anticancer efficiency of PhCsNPs through bio-assessment, such as cytotoxicity measurement, intracellular ROS, mitochondrial dysfunction, lipid peroxidation measurement, antioxidants status, apoptotic associated gene expression profile and cell cycle analysis in human oral cancer cell lines. The findings suggested that PhCsNPs augmented the mitochondrial-mediated apoptotic mechanism through the stimulation of oxidative stress, depletion of cellular antioxidants and cell cycle arrest. Our data suggested that PhCsNPs could be used as an efficient therapeutic agent for the treatment of oral cancer.


Assuntos
Apoptose/efeitos dos fármacos , Quitosana , Concentração de Íons de Hidrogênio , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas , Floretina/química , Floretina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Neoplasias Bucais , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise Espectral
6.
J Mater Chem B ; 6(21): 3555-3570, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254451

RESUMO

In this article, we report the validation of cancer nanotherapy for the treatment of cancers using quercetin (Qtn). Much attention has been paid to the use of nanoparticles (NPs) to deliver drugs of interest in vitro/in vivo. Highly developed NPs-based nano drug delivery systems (NDDS) are an attractive approach to target cancer cell apoptosis, which is related to the onset and progression of cancer. Conventional chemotherapy has some notable drawbacks, such as lack of specificity, requirement of high drug doses, adverse effects, and gradual development of multidrug resistance (MDR), that decrease the efficacy of cancer therapy. To overcome these challenges of chemotherapy, the achievement of high drug loading in combination with low leakage at physiological pH, minimal toxicity toward healthy cells, and tunable controlled release at the site of action is an ongoing challenge. To assist drug delivery, we have prepared PVPylated-TiO2NPs containing Qtn with high loading efficiency (26.6% w/w) as a NDDS. The Qtn-PVPylated-TiO2NPs are uptaken via endocytosis by cancer cells and can generate intracellular reactive oxygen species (ROS) in order to increase mitochondrial membrane potential loss (Δψm) and enable release of cytochrome-c, followed by dysregulation of Bcl-2 into the cytosol and activation of caspase-3 to induce cancer cell apoptosis. These novel nanocombinations can be utilized to improve cancer nanotherapy by induction of apoptosis in vitro. Analysis at the molecular level revealed that the Qtn-PVPylated-TiO2NPs nanocombinations induced Δψm-mediated apoptotic signaling pathways. Overall, this study demonstrated that careful design of non-toxic nanocarriers for cancer nanotherapy can yield affordable NDDS.

7.
J Mater Chem B ; 6(27): 4539, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254671

RESUMO

Correction for 'Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO2NPs' by Thondhi Ponraj et al., J. Mater. Chem. B, 2018, 6, 3555-3570.

8.
J Biomol Struct Dyn ; 35(14): 3012-3031, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27691050

RESUMO

The studies on protein-dye interactions are important in biological process and it is regarded as vital step in rational drug design. The interaction of thionine (TH) with human serum albumin (HSA) was analyzed using isothermal titration calorimetry (ITC), spectroscopic, and molecular docking technique. The emission spectral titration of HSA with TH revealed the formation of HSA-TH complex via static quenching process. The results obtained from absorption, synchronous emission, circular dichroism, and three-dimensional (3D) emission spectral studies demonstrated that TH induces changes in the microenvironment and secondary structure of HSA. Results from ITC experiments suggested that the binding of TH dye was favored by negative enthalpy and a favorable entropy contribution. Site marker competitive binding experiments revealed that the binding site of TH was located in subdomain IIA (Sudlow site I) of HSA. Molecular docking study further substantiates that TH binds to the hydrophobic cavity of subdomain IIA (Sudlow site I) of HSA. Further, we have studied the cytotoxic activity of TH and TH-HSA complex on breast cancer cell lines (MCF-7) by MTT assay and LDH assay. These studies revealed that TH-HSA complex showed the higher level of cytotoxicity in cancer cells than TH dye-treated MCF-7 cells and the significant adverse effect did not found in the normal HBL-100 cells. Fluorescence microscopy analyses of nuclear fragmentation studies validate the significant reduction of viability of TH-HSA-treated human MCF-7 breast cancer cells through activation of apoptotic-mediated pathways.


Assuntos
Fenotiazinas/química , Albumina Sérica Humana/química , Análise Espectral , Sítios de Ligação , Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Células MCF-7 , Microscopia de Fluorescência , Modelos Moleculares , Fenotiazinas/metabolismo , Ligação Proteica , Conformação Proteica , Albumina Sérica Humana/metabolismo , Espectrometria de Fluorescência , Análise Espectral/métodos
9.
Int J Biol Macromol ; 95: 1235-1245, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27840218

RESUMO

Lectins are proteins that show a variety of biological activities. Nevertheless, information on lectin from Gluttonous beauts and their anticancer activities are very limited. In this study, we purified a lectin from hemolymph of G. beauts and identified its molecular weight to be 66kDa. The effect of lectin at different concentrations (µg/mL) on the cell growth and apoptosis were evaluated against MCF-7 and MCF-10A cells, whereas cytotoxicity to the MCF-7 cells mediated by lectin was observed and the mechanism of action of the lectin in including apoptosis in cancer cells via the intrinsic pathway was also proposed. The MCF-7 cells were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation. In MCF-10A cells lectin did not show any adverse effect even at higher concentration. Cell cycle analysis also showed a significant cell cycle arrest on selected cells after lectin treatment. Western blotting suggested that lectin up regulates the apoptotic protein expression in MCF-7 cells while it down regulates the level of Bcl-2 expression.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Artrópodes/farmacologia , Artrópodes/química , Hemolinfa/química , Lectinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes/isolamento & purificação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Humanos , Lectinas/isolamento & purificação , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
10.
J Inorg Biochem ; 159: 50-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26918899

RESUMO

The new carbazole N,N' ligand containing [(η(5)-C5Me5)MCl(L)]PF6, (M=Ir (1) and Rh (2)) and [(η(6)-C6H6)RuCl(L)]PF6 (3) (C5Me5=pentamethylcyclopentadienyl, L=9-ethyl-N-(pyridine-2-yl methylene)-9H-carbazole-3-amine) complexes has been synthesized and characterized by (1)H NMR, (13)C NMR, 2D NMR, melting point analysis, electronic absorption, infrared spectroscopy, HR-Mass spectroscopy and elemental analyses. The crystal structure of the [(η(5)-C5Me5)RhCl(L)]PF6 has been confirmed by single crystal XRD. The anticancer study of the synthesized complexes 1-3 clearly showed a potent inhibitor of human breast cancer cells (MCF-7) under in vitro conditions. The inhibitory concentrations (IC50) of the complexes 1-3 were determined at low (5, 6 and 8µM) concentration against the MCF-7 human breast cancer cell line. Further cytotoxic, cell cycle and nuclear studies confirmed that the novel half sandwich Ir(III), Rh(III) and Ru(II) complexes could be effective against MCF-7 human breast cancer cell proliferation. Moreover the results indicate that anticancer in vitro activity of complexes 1-3 falls in the order of 1>2>3. A molecular docking study of the complexes 1-3 showed the nature of binding energy, H-bond and hydrophobic interactions with the cyclooxygenase-2 (COX-2) receptor.


Assuntos
Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Carbazóis , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Compostos Organometálicos , Rubídio , Rutênio , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carbazóis/síntese química , Carbazóis/química , Carbazóis/farmacologia , Feminino , Humanos , Células MCF-7 , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rubídio/química , Rubídio/farmacologia , Rutênio/química , Rutênio/farmacologia
11.
Parasitol Res ; 115(3): 1085-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621285

RESUMO

Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 µg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as a safe tool to build newer and safer mosquitocides and chemotherapeutic agents with little systemic toxicity.


Assuntos
Aedes/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Insetos Vetores/efeitos dos fármacos , Nanopartículas Metálicas , Controle de Mosquitos/métodos , Titânio , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Dengue/transmissão , Feminino , Humanos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Extratos Vegetais/farmacologia , Folhas de Planta/química , Pupa/efeitos dos fármacos , Prata , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA