RESUMO
We investigated the complex relations of socioeconomic status (SES) and healthy lifestyles with cognitive functions among older adults in 1313 participants, aged 60 years and older, from the National Health and Nutrition Examination Survey 2011-2014. Cognitive function was measured using an average of the standardized z-scores of the Consortium to Establish a Registry for Alzheimer's Disease Word Learning and delayed recall tests, the Animal Fluency Test, and the Digit Symbol Substitution Test. Latent class analysis of family income, education, occupation, health insurance, and food security was used to define composite SES (low, medium, high). A healthy lifestyle score was calculated based on smoking, alcohol consumption, physical activity, and the Healthy-Eating-Index-2015. In survey-weighted multivariable linear regressions, participants with 3 or 4 healthy behaviors had 0.07 (95% CI 0.005, 0.14) standard deviation higher composite cognitive z-score, relative to those with one or no healthy behavior. Participants with high SES had 0.37 (95% CI 0.29, 0.46) standard deviation higher composite cognitive z-score than those with low SES. No statistically significant interaction was observed between healthy lifestyle score and SES. Our findings suggested that higher healthy lifestyle scores and higher SES were associated with better cognitive function among older adults in the United States.
Assuntos
Cognição , Comportamentos Relacionados com a Saúde , Animais , Inquéritos Nutricionais , Baixo Nível Socioeconômico , Consumo de Bebidas AlcoólicasRESUMO
We investigated the complex relations of socioeconomic status (SES) and healthy lifestyles with cognitive functions among older adults in 1,313 participants, aged 60 years and older, from the National Health and Nutrition Examination Survey 2011-2014. Cognitive function was measured using an average of the standardized z-scores of the Consortium to Establish a Registry for Alzheimerâ™s Disease Word Learning and delayed recall tests, the Animal Fluency Test, and the Digit Symbol Substitution Test. Latent class analysis of family income, education, occupation, health insurance, and food security was used to define composite SES (low, medium, high). A healthy lifestyle score was calculated based on smoking, alcohol consumption, physical activity, and the Healthy-Eating-Index-2015. In survey-weighted multivariable linear regressions, participants with 3 or 4 healthy behaviors had 0.07 (95% CI: 0.005, 0.14) standard deviation higher composite cognitive z-score, relative to those with one or no healthy behavior. Participants with high SES had 0.37 (95% CI: 0.29, 0.46) standard deviation higher composite cognitive z-score than those with low SES. No statistically significant interaction was observed between healthy lifestyle score and SES. Our findings suggested that higher healthy lifestyle scores and higher SES were associated with better cognitive function among older adults in the United States.
RESUMO
The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aß fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aß42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aß antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aß aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.
Assuntos
Amiloide/metabolismo , Anticorpos Monoclonais/imunologia , Encéfalo/patologia , Amiloide/antagonistas & inibidores , Amiloide/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Encéfalo/imunologia , Estudos de Casos e Controles , Humanos , Camundongos , Modelos Moleculares , Conformação ProteicaRESUMO
Divergent protein context helps explain why polyglutamine expansion diseases differ clinically and pathologically. This heterogeneity may also extend to how polyglutamine disease proteins are handled by cellular pathways of proteostasis. Studies suggest, for example, that the ubiquitin-proteasome shuttle protein Ubiquilin-2 (UBQLN2) selectively interacts with specific polyglutamine disease proteins. Here we employ cellular models, primary neurons and mouse models to investigate the potential differential regulation by UBQLN2 of two polyglutamine disease proteins, huntingtin (HTT) and ataxin-3 (ATXN3). In cells, overexpressed UBQLN2 selectively lowered levels of full-length pathogenic HTT but not of HTT exon 1 fragment or full-length ATXN3. Consistent with these results, UBQLN2 specifically reduced accumulation of aggregated mutant HTT but not mutant ATXN3 in mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3), respectively. Normally a cytoplasmic protein, UBQLN2 translocated to the nuclei of neurons in HD mice but not in SCA3 mice. Remarkably, instead of reducing the accumulation of nuclear mutant ATXN3, UBQLN2 induced an accumulation of cytoplasmic ATXN3 aggregates in neurons of SCA3 mice. Together these results reveal a selective action of UBQLN2 toward polyglutamine disease proteins, indicating that polyglutamine expansion alone is insufficient to promote UBQLN2-mediated clearance of this class of disease proteins. Additional factors, including nuclear translocation of UBQLN2, may facilitate its action to clear intranuclear, aggregated disease proteins like HTT.
Assuntos
Ataxina-3/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Machado-Joseph/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas à Autofagia/genética , Modelos Animais de Doenças , Éxons , Heterogeneidade Genética , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Complexo de Endopeptidases do ProteassomaRESUMO
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Assuntos
Doença de Machado-Joseph , Peptídeos , Animais , Humanos , Expansão das Repetições de TrinucleotídeosRESUMO
Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways that control its production or stability. Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 candidate genes identified in the primary screen, 100 genes were selected for validation. Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential molecular network with connections to tumor necrosis factor-α/nuclear factor-kappa B (TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Overall, we identified 15 druggable genes with diverse functions to be suppressors or enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein.
Assuntos
Ataxina-3/genética , Doença de Machado-Joseph/genética , Neurônios/metabolismo , Proteínas Repressoras/genética , Humanos , Doença de Machado-Joseph/patologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/genéticaRESUMO
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of autosomal dominantly inherited progressive disorders, the clinical hallmark of which is loss of balance and coordination accompanied by slurred speech; onset is most often in adult life. Genetically, SCAs are grouped as repeat expansion SCAs, such as SCA3/Machado-Joseph disease (MJD), and rare SCAs that are caused by non-repeat mutations, such as SCA5. Most SCA mutations cause prominent damage to cerebellar Purkinje neurons with consecutive cerebellar atrophy, although Purkinje neurons are only mildly affected in some SCAs. Furthermore, other parts of the nervous system, such as the spinal cord, basal ganglia and pontine nuclei in the brainstem, can be involved. As there is currently no treatment to slow or halt SCAs (many SCAs lead to premature death), the clinical care of patients with SCA focuses on managing the symptoms through physiotherapy, occupational therapy and speech therapy. Intense research has greatly expanded our understanding of the pathobiology of many SCAs, revealing that they occur via interrelated mechanisms (including proteotoxicity, RNA toxicity and ion channel dysfunction), and has led to the identification of new targets for treatment development. However, the development of effective therapies is hampered by the heterogeneity of the SCAs; specific therapeutic approaches may be required for each disease.
Assuntos
Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/terapia , Fatores Etários , Progressão da Doença , Humanos , Programas de Rastreamento/métodos , Fármacos Neuroprotetores/uso terapêutico , Equilíbrio Postural/fisiologia , Riluzol/uso terapêutico , Distúrbios da Fala/etiologia , Ataxias Espinocerebelares/epidemiologiaRESUMO
Antibodies that recognize amyloidogenic aggregates with high conformational and sequence specificity are important for detecting and potentially treating a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, these types of antibodies are challenging to generate because of the large size, hydrophobicity, and heterogeneity of protein aggregates. To address this challenge, we developed a method for generating antibodies specific for amyloid aggregates. First, we grafted amyloidogenic peptide segments from the target polypeptide [Alzheimer's amyloid-ß (Aß) peptide] into the complementarity-determining regions (CDRs) of a stable antibody scaffold. Next, we diversified the grafted and neighboring CDR sites using focused mutagenesis to sample each WT or grafted residue, as well as one to five of the most commonly occurring amino acids at each site in human antibodies. Finally, we displayed these antibody libraries on the surface of yeast cells and selected antibodies that strongly recognize Aß-amyloid fibrils and only weakly recognize soluble Aß. We found that this approach enables the generation of monovalent and bivalent antibodies with nanomolar affinity for Aß fibrils. These antibodies display high conformational and sequence specificity as well as low levels of nonspecific binding and recognize a conformational epitope at the extreme N terminus of human Aß. We expect that this systematic approach will be useful for generating antibodies with conformational and sequence specificity against a wide range of peptide and protein aggregates associated with neurodegenerative disorders.
Assuntos
Peptídeos beta-Amiloides , Regiões Determinantes de Complementaridade , Anticorpos de Cadeia Única , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Humanos , Mutagênese Sítio-Dirigida , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologiaRESUMO
The Parkinson's disease (PD)-related ubiquitin ligase Parkin and mitochondrial kinase PINK1 function together in the clearance of damaged mitochondria. Upon mitochondrial depolarization, Parkin translocates to mitochondria in a PINK1-dependent manner to ubiquitinate outer mitochondrial membrane proteins. According to the current model, the ubiquitin- and LC3-binding adaptor protein SQSTM1 is recruited to mitochondria, followed by their selective degradation through autophagy (mitophagy). However, the role of the ubiquitin proteasome system (UPS), although essential for this process, still remains largely elusive. Here, we investigated the role of the UPS and autophagy by applying the potassium ionophore Valinomycin in PINK1-deficient human fibroblasts and isogenic neuroblastoma cell lines generated by CRISPR/Cas9. Although identical to the commonly used CCCP/FCCP in terms of dissipating the mitochondrial membrane potential and triggering complete removal of mitochondria, Valinomycin did not induce conversion of LC3 to its autophagy-related form. Moreover, FCCP-induced conversion of LC3 occurred even in mitophagy-incompetent, PINK1-deficient cell lines. While both stressors required a functional UPS, the removal of depolarized mitochondria persisted in cells depleted of LC3A and LC3B. Our study highlights the importance of the UPS in PINK1-/Parkin-mediated mitochondrial quality control. In contrast, activation of autophagy, monitored through conversion of LC3, is likely induced by depolarizing-agent-induced toxicity in a PINK1-/Parkin-independent manner.
Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Sistemas CRISPR-Cas , Humanos , Células Tumorais CultivadasRESUMO
The dominantly inherited spinocerebellar ataxias (SCAs) are a large and diverse group of neurodegenerative diseases. The most prevalent SCAs (SCA1, SCA2, SCA3, SCA6 and SCA7) are caused by expansion of a glutamine-encoding CAG repeat in the affected gene. These SCAs represent a substantial portion of the polyglutamine neurodegenerative disorders and provide insight into this class of diseases as a whole. Recent years have seen considerable progress in deciphering the clinical, pathological, physiological and molecular aspects of the polyglutamine SCAs, with these advances establishing a solid base from which to pursue potential therapeutic approaches.
Assuntos
Peptídeos/genética , Ataxias Espinocerebelares , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Modelos Genéticos , Modelos Neurológicos , Mutação , Proteínas do Tecido Nervoso/genética , Peptídeos/fisiologia , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologiaRESUMO
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene. This expansion leads to misfolding and aggregation of mutant ataxin-3 (ATXN3) and degeneration of select brain regions. A key unanswered question in SCA3 and other polyglutamine diseases is the extent to which neurodegeneration is mediated through gain-of-function versus loss-of-function. To address this question in SCA3, we performed transcriptional profiling on the brainstem, a highly vulnerable brain region in SCA3, in a series of mouse models with varying degrees of ATXN3 expression and aggregation. We include two SCA3 knock-in mouse models: our previously published model that erroneously harbors a tandem duplicate of the CAG repeat-containing exon, and a corrected model, introduced here. Both models exhibit dose-dependent neuronal accumulation and aggregation of mutant ATXN3, but do not exhibit a behavioral phenotype. We identified a molecular signature that correlates with ATXN3 neuronal aggregation yet is primarily linked to oligodendrocytes, highlighting early white matter dysfunction in SCA3. Two robustly elevated oligodendrocyte transcripts, Acy3 and Tnfrsf13c, were confirmed as elevated at the protein level in SCA3 human disease brainstem. To determine if mutant ATXN3 acts on oligodendrocytes cell-autonomously, we manipulated the repeat expansion in the variant SCA3 knock-in mouse by cell-type specific Cre/LoxP recombination. Changes in oligodendrocyte transcripts are driven cell-autonomously and occur independent of neuronal ATXN3 aggregation. Our findings support a primary toxic gain of function mechanism and highlight a previously unrecognized role for oligodendrocyte dysfunction in SCA3 disease pathogenesis.
Assuntos
Ataxina-3/genética , Ataxias Espinocerebelares/genética , Animais , Ataxina-3/metabolismo , Receptor do Fator Ativador de Células B/metabolismo , Encéfalo/metabolismo , Tronco Encefálico , Modelos Animais de Doenças , Éxons , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Oligodendroglia/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/metabolismo , Repetições de TrinucleotídeosRESUMO
Polyglutamine (polyQ) repeat expansion in the deubiquitinase ataxin-3 causes neurodegeneration in Spinocerebellar Ataxia Type 3 (SCA3), one of nine inherited, incurable diseases caused by similar mutations. Ataxin-3's degradation is inhibited by its binding to the proteasome shuttle Rad23 through ubiquitin-binding site 2 (UbS2). Disrupting this interaction decreases levels of ataxin-3. Since reducing levels of polyQ proteins can decrease their toxicity, we tested whether genetically modulating the ataxin-3-Rad23 interaction regulates its toxicity in Drosophila. We found that exogenous Rad23 increases the toxicity of pathogenic ataxin-3, coincident with increased levels of the disease protein. Conversely, reducing Rad23 levels alleviates toxicity in this SCA3 model. Unexpectedly, pathogenic ataxin-3 with a mutated Rad23-binding site at UbS2, despite being present at markedly lower levels, proved to be more pathogenic than a disease-causing counterpart with intact UbS2. Additional studies established that the increased toxicity upon mutating UbS2 stems from disrupting the autoprotective role that pathogenic ataxin-3 has against itself, which depends on the co-chaperone, DnaJ-1. Our data reveal a previously unrecognized balance between pathogenic and potentially therapeutic properties of the ataxin-3-Rad23 interaction; they highlight this interaction as critical for the toxicity of the SCA3 protein, and emphasize the importance of considering protein context when pursuing suppressive avenues.
Assuntos
Ataxina-3/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Doença de Machado-Joseph/genética , Degeneração Neural/genética , Proteínas Repressoras/genética , Animais , Ataxina-3/metabolismo , Sítios de Ligação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Chaperonas Moleculares/genética , Degeneração Neural/patologia , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Ubiquitina/genéticaRESUMO
No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.
Assuntos
Antipsicóticos/uso terapêutico , Aripiprazol/uso terapêutico , Ataxina-3/metabolismo , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/metabolismo , Proteínas Mutantes/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Ataxina-3/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Modelos Animais de Doenças , Drosophila , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293/efeitos dos fármacos , Células HEK293/metabolismo , Células HEK293/ultraestrutura , Humanos , Doença de Machado-Joseph/genética , Camundongos , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Peptídeos/genética , Piperidinas/farmacologia , Piranos/farmacologia , Pirazóis/farmacologiaRESUMO
UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (~50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems.
Assuntos
Epiderme , Anormalidades da Pele , Enzimas de Conjugação de Ubiquitina , Animais , Epiderme/anormalidades , Epiderme/enzimologia , Epiderme/imunologia , Transtornos Leucocíticos/congênito , Transtornos Leucocíticos/enzimologia , Transtornos Leucocíticos/genética , Transtornos Leucocíticos/imunologia , Masculino , Camundongos , Camundongos Knockout , Anormalidades da Pele/enzimologia , Anormalidades da Pele/genética , Anormalidades da Pele/imunologia , Testículo/enzimologia , Testículo/imunologia , Timo/enzimologia , Timo/imunologia , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/imunologiaRESUMO
Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.
RESUMO
The physiological function of Ataxin-3 (ATXN3), a deubiquitylase (DUB) involved in Machado-Joseph Disease (MJD), remains elusive. In this study, we demonstrate that ATXN3 is required for neuronal differentiation and for normal cell morphology, cytoskeletal organization, proliferation and survival of SH-SY5Y and PC12 cells. This cellular phenotype is associated with increased proteasomal degradation of α5 integrin subunit (ITGA5) and reduced activation of integrin signalling and is rescued by ITGA5 overexpression. Interestingly, silencing of ATXN3, overexpression of mutant versions of ATXN3 lacking catalytic activity or bearing an expanded polyglutamine (polyQ) tract led to partially overlapping phenotypes. In vivo analysis showed that both Atxn3 knockout and MJD transgenic mice had decreased levels of ITGA5 in the brain. Furthermore, abnormal morphology and reduced branching were observed both in cultured neurons expressing shRNA for ATXN3 and in those obtained from MJD mice. Our results show that ATXN3 rescues ITGA5 from proteasomal degradation in neurons and that polyQ expansion causes a partial loss of this cellular function, resulting in reduced integrin signalling and neuronal cytoskeleton modifications, which may be contributing to neurodegeneration.
Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ataxina-3 , Diferenciação Celular , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Integrina alfa5/metabolismo , Camundongos , Células PC12 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos WistarRESUMO
Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the É-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.
RESUMO
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease caused by a polyglutamine expansion in the deubiquitinating enzyme, Ataxin-3. Currently, there are no effective treatments for this fatal disorder but studies support the hypothesis that reducing mutant Ataxin-3 protein levels might reverse or halt the progression of disease in SCA3. Here, we sought to modulate ATXN3 expression in vivo using RNA interference. We developed artificial microRNA mimics targeting the 3'-untranslated region (3'UTR) of human ATXN3 and then used recombinant adeno-associated virus to deliver them to the cerebellum of transgenic mice expressing the full human disease gene (SCA3/MJD84.2 mice). Anti-ATXN3 microRNA mimics effectively suppressed human ATXN3 expression in SCA3/MJD84.2 mice. Short-term treatment cleared the abnormal nuclear accumulation of mutant Ataxin-3 throughout the transduced SCA3/MJD84.2 cerebellum. Analysis also revealed changes in the steady-state levels of specific microRNAs in the cerebellum of SCA3/MJD84.2 mice, a previously uncharacterized molecular phenotype of SCA3 that appears to be dependent on mutant Ataxin-3 expression. Our findings support the preclinical development of molecular therapies aimed at halting the expression of ATXN3 as a viable approach to SCA3 and point to microRNA deregulation as a potential surrogate marker of SCA3 pathogenesis.
Assuntos
Doença de Machado-Joseph/patologia , MicroRNAs/efeitos adversos , Proteínas Mutantes/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas Nucleares/efeitos dos fármacos , Fenótipo , Proteínas Repressoras/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , Ataxina-3 , Cerebelo/patologia , Dependovirus/efeitos dos fármacos , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Vetores Genéticos/efeitos dos fármacos , Vetores Genéticos/genética , Células HEK293 , Humanos , Doença de Machado-Joseph/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/farmacologia , Mimetismo Molecular , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução Genética/métodosRESUMO
Machado-Joseph disease (MJD) is a dominantly inherited ataxia caused by a polyglutamine-coding expansion in the ATXN3 gene. Suppressing expression of the toxic gene product represents a promising approach to therapy for MJD and other polyglutamine diseases. We performed an extended therapeutic trial of RNA interference (RNAi) targeting ATXN3 in a mouse model expressing the full human disease gene and recapitulating key disease features. Adeno-associated virus (AAV) encoding a microRNA (miRNA)-like molecule, miRATXN3, was delivered bilaterally into the cerebellum of 6- to 8-week-old MJD mice, which were then followed up to end-stage disease to assess the safety and efficacy of anti-ATXN3 RNAi. Despite effective, lifelong suppression of ATXN3 in the cerebellum and the apparent safety of miRATXN3, motor impairment was not ameliorated in treated MJD mice and survival was not prolonged. These results with an otherwise effective RNAi agent suggest that targeting a large extent of the cerebellum alone may not be sufficient for effective human therapy. Artificial miRNAs or other nucleotide-based suppression strategies targeting ATXN3 more widely in the brain should be considered in future preclinical tests.
Assuntos
Doença de Machado-Joseph/terapia , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Animais , Ataxina-3 , Cerebelo/metabolismo , Cerebelo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Doença de Machado-Joseph/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transdução GenéticaRESUMO
Attachment of ubiquitin to substrate is typically thought to occur via formation of an isopeptide bond between the C-terminal glycine residue of ubiquitin and a lysine residue in the substrate. In vitro, Ube2w is nonreactive with free lysine yet readily ubiquitinates substrate. Ube2w also contains novel residues within its active site that are important for its ability to ubiquitinate substrate. To identify the site of modification, we analyzed ubiquitinated substrates by mass spectrometry and found the N-terminal -NH2 group as the site of conjugation. To confirm N-terminal ubiquitination, we generated lysine-less and N-terminally blocked versions of one substrate, the polyglutamine disease protein ataxin-3, and showed that Ube2w can ubiquitinate a lysine-less, but not N-terminally blocked, ataxin-3. This was confirmed with a second substrate, the neurodegenerative disease protein Tau. Finally, we directly sequenced the N terminus of unmodified and ubiquitinated ataxin-3, demonstrating that Ube2w attaches ubiquitin to the N terminus of its substrates. Together these data demonstrate that Ube2w has novel enzymatic properties that direct ubiquitination of the N terminus of substrates.