RESUMO
AIMS: Patients with mutations in ATP8B1 develop progressive familial intrahepatic cholestasis type 1 [PFIC1], a severe liver disease that requires life-saving liver transplantation. PFIC1 patients also present with gastrointestinal problems, including intestinal inflammation and diarrhoea, which are aggravated after liver transplantation. Here we investigate the intestinal function of ATP8B1 in relation to inflammatory bowel diseases. METHODS: ATP8B1 expression was investigated in intestinal samples of patients with Crohn's disease [CD] or ulcerative colitis [UC] as well as in murine models of intestinal inflammation. Colitis was induced in ATP8B1-deficient mice with dextran sodium sulphate [DSS] and intestinal permeability was investigated. Epithelial barrier function was assessed in ATP8B1 knockdown Caco2-BBE cells. Co-immunoprecipitation experiments were performed in Caco2-BBE cells overexpressing ATP8B1-eGFP. Expression and localization of ATP8B1 and tight junction proteins were investigated in cells and in biopsies of UC and PFIC1 patients. RESULTS: ATP8B1 expression was decreased in UC and DSS-treated mice, and was associated with a decreased tight junctional pathway transcriptional programme. ATP8B1-deficient mice were extremely sensitive to DSS-induced colitis, as evidenced by increased intestinal barrier leakage. ATP8B1 knockdown cells showed delayed barrier establishment that affected Claudin-4 [CLDN4] levels and localization. CLDN4 immunohistochemistry showed a tight junctional staining in control tissue, whereas in UC and intestinal PFIC1 samples, CLDN4 was not properly localized. CONCLUSION: ATP8B1 is important in the establishment of the intestinal barrier. Downregulation of ATP8B1 levels in UC, and subsequent altered localization of tight junctional proteins, including CLDN4, might therefore be an important mechanism in UC pathophysiology.
Assuntos
Colite Ulcerativa , Função da Barreira Intestinal , Animais , Feminino , Humanos , Masculino , Camundongos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Células CACO-2 , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/genética , Claudina-4/metabolismo , Claudina-4/genética , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colite Ulcerativa/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Função da Barreira Intestinal/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Junções Íntimas/metabolismoRESUMO
ATP8B1 is a phospholipid flippase that is deficient in patients with progressive familial intrahepatic cholestasis type 1 (PFIC1). PFIC1 patients suffer from severe liver disease but also present with dyslipidemia, including low plasma cholesterol, of yet unknown etiology. Here we show that ATP8B1 knockdown in HepG2 cells leads to a strong increase in the mitochondrial oxidative phosphorylation (OXPHOS) without a change in glycolysis. The enhanced OXPHOS coincides with elevated low-density lipoprotein receptor protein and increased mitochondrial fragmentation and phosphatidylethanolamine levels. Furthermore, expression of phosphatidylethanolamine N-methyltransferase, an enzyme that catalyzes the conversion of mitochondrial-derived phosphatidylethanolamine to phosphatidylcholine, was reduced in ATP8B1 knockdown cells. We conclude that ATP8B1 deficiency results in elevated mitochondrial PE levels that stimulate mitochondrial OXPHOS. The increased OXPHOS leads to elevated LDLR levels, which provides a possible explanation for the reduced plasma cholesterol levels in PFIC1 disease.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Adenosina Trifosfatases/metabolismo , Fosfatidiletanolaminas , Carcinoma Hepatocelular/genética , Fosforilação Oxidativa , Fosfolipídeos/metabolismo , Neoplasias Hepáticas/genética , Colesterol , Fosfatidilcolinas , Lipoproteínas LDL/metabolismoRESUMO
ATP8B1 is a phospholipid flippase and member of the type 4 subfamily of P-type ATPases (P4-ATPase) subfamily. P4-ATPases catalyze the translocation of phospholipids across biological membranes, ensuring proper membrane asymmetry, which is crucial for membrane protein targeting and activity, vesicle biogenesis, and barrier function. Here we have investigated the role of ATP8B1 in the endolysosomal pathway in macrophages. Depletion of ATP8B1 led to delayed degradation of content in the phagocytic pathway and in overacidification of the endolysosomal system. Furthermore, ATP8B1 knockdown cells exhibited large multivesicular bodies filled with intraluminal vesicles. Similar phenotypes were observed in CRISPR-generated ATP8B1 knockout cells. Importantly, induction of autophagy led to accumulation of autophagosomes in ATP8B1 knockdown cells. Collectively, our results support a novel role for ATP8B1 in lysosomal fusion in macrophages, a process crucial in the terminal phase of endolysosomal degradation.
Assuntos
Adenosina Trifosfatases , Fosfolipídeos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , LisossomosRESUMO
BACKGROUND & AIMS: Annexin A11 was identified as autoantigen in IgG4-related cholangitis (IRC), a B-cell driven disease. Annexin A11 modulates calcium-dependent exocytosis, a crucial mechanism for insertion of proteins into their target membranes. Human cholangiocytes form an apical 'biliary bicarbonate umbrella' regarded as defense against harmful hydrophobic bile acid influx. The bicarbonate secretory machinery comprises the chloride/bicarbonate exchanger AE2 and the chloride channel ANO1. We aimed to investigate the expression and function of annexin A11 in human cholangiocytes and a potential role of IgG1/IgG4-mediated autoreactivity against annexin A11 in the pathogenesis of IRC. METHODS: Expression of annexin A11 in human liver was studied by immunohistochemistry and immunofluorescence. In human control and ANXA11 knockdown H69 cholangiocytes, intracellular pH, AE2 and ANO1 surface expression, and bile acid influx were examined using ratio microspectrofluorometry, cell surface biotinylation, and 22,23-3H-glycochenodeoxycholic acid permeation, respectively. The localization of annexin A11-mEmerald and ANO1-mCherry was investigated by live-cell microscopy in H69 cholangiocytes after incubation with IRC patient serum containing anti-annexin A11 IgG1/IgG4-autoantibodies or disease control serum. RESULTS: Annexin A11 was strongly expressed in human cholangiocytes, but not hepatocytes. Knockdown of ANXA11 led to reduced plasma membrane expression of ANO1, but not AE2, alkalization of intracellular pH and uncontrolled bile acid influx. High intracellular calcium conditions led to annexin A11 membrane shift and colocalization with ANO1. Incubation with IRC patient serum inhibited annexin A11 membrane shift and reduced ANO1 surface expression. CONCLUSION: Cholangiocellular annexin A11 mediates apical membrane abundance of the chloride channel ANO1, thereby supporting biliary bicarbonate secretion. Insertion is inhibited by IRC patient serum containing anti-annexin A11 IgG1/IgG4-autoantibodies. Anti-annexin A11 autoantibodies may contribute to the pathogenesis of IRC by weakening the 'biliary bicarbonate umbrella'. LAY SUMMARY: We previously identified annexin A11 as a specific autoantigen in immunoglobulin G4-related cholangitis (IRC), a B-cell driven disease affecting the bile ducts. Human cholangiocytes are protected against harmful hydrophobic bile acid influx by a defense mechanism referred to as the 'biliary bicarbonate umbrella'. We found that annexin A11 is required for the formation of a robust bicarbonate umbrella. Binding of patient-derived annexin A11 autoantibodies inhibits annexin A11 function, possibly contributing to bile duct damage by weakening the biliary bicarbonate umbrella in patients with IRC.
Assuntos
Colangite/etiologia , Doença Relacionada a Imunoglobulina G4/complicações , Fatores de Proteção , Idoso , Anexinas/farmacologia , Anexinas/uso terapêutico , Autoantígenos/farmacologia , Autoantígenos/uso terapêutico , Biópsia/métodos , Biópsia/estatística & dados numéricos , Colangite/fisiopatologia , Feminino , Humanos , Doença Relacionada a Imunoglobulina G4/fisiopatologia , Fígado/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
Myoblast fusion is essential for the formation of multinucleated muscle fibers and is promoted by transient changes in the plasma membrane lipid distribution. However, little is known about the lipid transporters regulating these dynamic changes. Here, we show that proliferating myoblasts exhibit an aminophospholipid flippase activity that is downregulated during differentiation. Deletion of the P4-ATPase flippase subunit CDC50A (also known as TMEM30A) results in loss of the aminophospholipid flippase activity and compromises actin remodeling, RAC1 GTPase membrane targeting and cell fusion. In contrast, deletion of the P4-ATPase ATP11A affects aminophospholipid uptake without having a strong impact on cell fusion. Our results demonstrate that myoblast fusion depends on CDC50A and may involve multiple CDC50A-dependent P4-ATPases that help to regulate actin remodeling.
Assuntos
Adenosina Trifosfatases , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Adenosina Trifosfatases/metabolismo , Animais , Transporte Biológico , Diferenciação Celular , Fusão Celular , Camundongos , Mioblastos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismoRESUMO
Hydrophobic bile salts are considered to promote liver fibrosis in cholestasis. However, evidence for this widely accepted hypothesis remains scarce. In established animal models of cholestasis, e.g., by Mdr2 knockout, cholestasis and fibrosis are both secondary to biliary damage. Therefore, to test the specific contribution of accumulating bile salts to liver fibrosis in cholestatic disease, we applied the unique model of inducible hepatocellular cholestasis in cholate-fed Atp8b1G308V/G308V mice. Glycochenodeoxycholate (GCDCA) was supplemented to humanize the murine bile salt pool, as confirmed by HPLC. Biomarkers of cholestasis and liver fibrosis were quantified. Hepatic stellate cells (HSC) isolated from wild-type mice were stimulated with bile salts. Proliferation, cell accumulation, and collagen deposition of HSC were determined. In cholestatic Atp8b1G308V/G308V mice, increased hepatic expression of αSMA and collagen1a mRNA and excess hepatic collagen deposition indicated development of liver fibrosis only upon GCDCA supplementation. In vitro, numbers of myofibroblasts and deposition of collagen were increased after incubation with hydrophobic but not hydrophilic bile salts, and associated with EGFR and MEK1/2 activation. We concluded that chronic hepatocellular cholestasis alone, independently of biliary damage, induces liver fibrosis in mice in presence of the human bile salt GCDCA. Bile salts may have direct pro-fibrotic effects on HSC, putatively involving EGFR and MEK1/2 signaling.
Assuntos
Colestase/complicações , Hepatócitos/patologia , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Adenosina Trifosfatases/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Doença Crônica , Colágeno/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica , Ácido Glicoquenodesoxicólico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismoRESUMO
Active secretion of bile salts into the canalicular lumen drives bile formation and promotes biliary cholesterol and phospholipid output. Disrupting hepatic bile salt uptake, by inhibition of sodium-taurocholate cotransporting polypetide (NTCP; Slc10a1) with Myrcludex B, is expected to limit bile salt flux through the liver and thereby to decrease biliary lipid excretion. Here, we show that Myrcludex B-mediated NTCP inhibition actually causes an increase in biliary cholesterol and phospholipid excretion whereas biliary bile salt output and bile salt composition remains unchanged. Increased lysosomal discharge into bile was excluded as a potential contributor to increased biliary lipid secretion. Induction of cholesterol secretion was not a consequence of increased ATP-binding cassette subfamily G member 5/8 activity given that NTCP inhibition still promoted cholesterol excretion in Abcg8-/- mice. Stimulatory effects of NTCP inhibition were maintained in Sr-b1-/- mice, eliminating the possibility that the increase in biliary lipids was derived from enhanced uptake of high-density lipoprotein-derived lipids. NTCP inhibition shifts bile salt uptake, which is generally more periportally restricted, toward pericentral hepatocytes, as was visualized using a fluorescently labeled conjugated bile salt. As a consequence, exposure of the canalicular membrane to bile salts was increased, allowing for more cholesterol and phospholipid molecules to be excreted per bile salt. Conclusion: NTCP inhibition increases biliary lipid secretion, which is independent of alterations in bile salt output, biliary bile salt hydrophobicity, or increased activity of dedicated cholesterol and phospholipid transporters. Instead, NTCP inhibition shifts hepatic bile salt uptake from mainly periportal hepatocytes toward pericentral hepatocytes, thereby increasing exposure of the canalicular membrane to bile salts linking to increased biliary cholesterol secretion. This process provides an additional level of control to biliary cholesterol and phospholipid secretion.
Assuntos
Sistema Biliar/metabolismo , Colesterol/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Fosfolipídeos/metabolismo , Simportadores/antagonistas & inibidores , Animais , Ácidos e Sais Biliares/metabolismo , Lipopeptídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 3 (PFIC3), for which there are limited therapeutic options, often leads to end-stage liver disease before adulthood due to impaired ABCB4-dependent phospholipid transport to bile. Using adeno-associated virus serotype 8 (AAV8)-mediated gene therapy, we aimed to restore the phospholipid content in bile to levels that prevent liver damage, thereby enabling stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. METHODS: Ten-week-old Abcb4-/- mice received a single dose of AAV8-hABCB4 (nâ¯=â¯10) or AAV8-GFP (nâ¯=â¯7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26â¯weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2â¯weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by immunohistochemistry. RESULTS: Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26â¯weeks after administration. AAV8-hABCB4 expression restored biliary phospholipid excretion, increasing the phospholipid and cholesterol content in bile to levels that ameliorate liver damage. This resulted in normalization of the plasma cholestatic markers, alkaline phosphatase and bilirubin. In addition, AAV8-hABCB4 prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study. CONCLUSION: Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. Translational studies that verify the clinical feasibility of this approach are warranted. LAY SUMMARY: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. The proliferation of liver cells was also reduced, which contributes to long-term correction of the phenotype. Further studies are required to evaluate whether this approach can be applied to patients with PFIC3.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Bile/metabolismo , Colestase Intra-Hepática , Terapia Genética/métodos , Cirrose Hepática/metabolismo , Fosfolipídeos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/terapia , Dependovirus , Camundongos , Camundongos Transgênicos , Via Secretória/fisiologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
Extracellular vesicles (EVs) released by cells have a role in intercellular communication to regulate a wide range of biological processes. Two types of EVs can be recognized. Exosomes, which are released from multi-vesicular bodies upon fusion with the plasma membrane, and ectosomes, which directly bud from the plasma membrane. How cells regulate the quantity of EV release is largely unknown. One of the initiating events in vesicle biogenesis is the regulated transport of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes. This process is catalyzed by P4-ATPases. The role of these phospholipid transporters in intracellular vesicle transport has been established in lower eukaryotes and is slowly emerging in mammalian cells. In Caenorhabditis elegans (C. elegans), deficiency of the P4-ATPase member TAT-5 resulted in enhanced EV shedding, indicating a role in the regulation of EV release. In this study, we investigated whether the mammalian ortholog of TAT-5, ATP9A, has a similar function in mammalian cells. We show that knockdown of ATP9A expression in human hepatoma cells resulted in a significant increase in EV release that was independent of caspase-3 activation. Pharmacological blocking of exosome release in ATP9A knockdown cells did significantly reduce the total number of EVs. Our data support a role for ATP9A in the regulation of exosome release from human cells.
Assuntos
Adenosina Trifosfatases/genética , Exossomos/genética , Vesículas Extracelulares/genética , Proteínas de Membrana Transportadoras/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspase 3/genética , Comunicação Celular/genética , Membrana Celular/genética , Micropartículas Derivadas de Células/genética , Endocitose/genética , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fosfolipídeos/metabolismo , Transporte Proteico/genéticaRESUMO
We present the first patient with a defect in the Na+-taurocholate cotransporting polypeptide SLC10A1 (NTCP), which plays a key role in the enterohepatic circulation of bile salts. The clinical presentation of the child was mild and the child showed no signs of liver dysfunction or pruritus despite extremely elevated plasma bile salt levels (>100-fold upper-limit of normal). A homozygous point mutation was found in the SLC10A1 gene (resulting in amino acid change R252H) and functional studies confirmed the pathogenicity of the mutation. This confirms the role of NTCP as the major transporter of conjugated bile salts into the liver as part of the enterohepatic circulation and shows that other transporters partly can take over its function, resulting in a relatively mild phenotype. This work was published previously in [Vaz et al.: Hepatology 2015;61:260-267] and supplemented with some follow-up information of the patient.
Assuntos
Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/deficiência , Simportadores/deficiência , Ácido Quenodesoxicólico/metabolismo , Pré-Escolar , Feminino , Seguimentos , Humanos , Erros Inatos do Metabolismo/diagnóstico , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Fenótipo , Simportadores/metabolismo , Fatores de TempoRESUMO
BACKGROUND & AIMS: In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations. VPS33B is a protein involved in membrane trafficking that interacts with RAB11A at recycling endosomes. To understand the pathways that regulate hepatocyte polarity better, we investigated VPS33B deficiency using a novel mouse model with a liver-specific Vps33b deletion. METHODS: To assess functional polarity, plasma and bile samples were collected from Vps33b liver knockout (Vps33bfl/fl-AlfpCre) and control (Vps33bfl/fl) mice; bile components or injected substrates were quantitated by mass spectrometry or fluorometry. For structural analysis, livers underwent light and transmission electron microscopy. Apical membrane and tight junction protein localisation was assessed by immunostaining. Adeno-associated virus vectors were used for in vivo gene rescue experiments. RESULTS: Like patients, Vps33bfl/fl-AlfpCre mice showed mislocalisation of ATP-binding cassette proteins that are specifically trafficked to the apical membrane via Rab11a-positive recycling endosomes. This was associated with retention of bile components in blood. Loss of functional tight junction integrity and depletion of apical microvilli were seen in knockout animals. Gene transfer partially rescued these defects. CONCLUSIONS: Vps33b has a key role in establishing structural and functional aspects of hepatocyte polarity and may be a target for gene replacement therapy. LAY SUMMARY: Hepatocytes are liver cells with tops and bottoms; that is, they are polarised. At their bottoms they absorb substances from blood. They then, at their tops, secrete these substances and their metabolites into bile. When polarity is lost, this directional flow of substances from blood to bile is disrupted and liver disease follows. In this study, using a new mouse model with a liver-specific mutation of Vps33b, the mouse version of a gene that is mutated in most patients with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, we investigated how the Vps33b gene product contributes to establishing hepatocyte polarity. We identified in these mice abnormalities similar to those in children with ARC syndrome. Gene transfer could partly reverse the mouse abnormalities. Our work contributes to the understanding of VPS33B disease and hepatocyte polarity in general, and may point towards gene transfer mediated treatment of ARC liver disease.
Assuntos
Polaridade Celular , Hepatócitos/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Artrogripose/patologia , Artrogripose/terapia , Ácidos e Sais Biliares/sangue , Colestase/patologia , Colestase/terapia , Colesterol/sangue , Terapia Genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Insuficiência Renal/patologia , Insuficiência Renal/terapia , Junções Íntimas/fisiologia , Proteínas de Transporte Vesicular/genéticaRESUMO
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the ß-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.
Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Adenosina Trifosfatases/imunologia , Endocitose , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/imunologia , Transdução de SinaisRESUMO
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-ß-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation.
Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica , Ácido Taurocólico/análogos & derivados , Animais , Transporte Biológico Ativo , Colestase/complicações , Colestase/metabolismo , Colestase/patologia , Colesterol 7-alfa-Hidroxilase/metabolismo , Células Hep G2 , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ácido Taurocólico/metabolismoRESUMO
Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency.
Assuntos
Adenosina Trifosfatases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ativação do Canal Iônico , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
UNLABELLED: Anion exchanger 2 (AE2), the principal bicarbonate secretor in the human biliary tree, is down-regulated in primary biliary cholangitis. AE2 creates a "bicarbonate umbrella" that protects cholangiocytes from the proapoptotic effects of bile salts by maintaining them deprotonated. We observed that knockdown of AE2 sensitized immortalized H69 human cholangiocytes to not only bile salt-induced apoptosis (BSIA) but also etoposide-induced apoptosis. Because the toxicity of etoposide is pH-independent, there could be a more general mechanism for sensitization of AE2-depleted cholangiocytes to apoptotic stimuli. We found that AE2 deficiency led to intracellular bicarbonate accumulation and increased expression and activity of soluble adenylyl cyclase (sAC), an evolutionarily conserved bicarbonate sensor. Thus, we hypothesized that sAC regulates BSIA. H69 cholangiocytes and primary mouse cholangiocytes were used as models. The sAC-specific inhibitor KH7 not only reversed sensitization to BSIA in AE2-depleted H69 cholangiocytes but even completely prevented BSIA. sAC knockdown by tetracycline-inducible short hairpin RNA also prevented BSIA. In addition, sAC inhibition reversed BSIA membrane blebbing, nuclear condensation, and DNA fragmentation. Furthermore, sAC inhibition also prevented BSIA in primary mouse cholangiocytes. Mechanistically, sAC inhibition prevented Bax phosphorylation at Thr167 and mitochondrial translocation of Bax and cytochrome c release but not c-Jun N-terminal kinase activation during BSIA. Finally, BSIA in H69 cholangiocytes was inhibited by intracellular Ca(2+) chelation, aggravated by thapsigargin, and unaffected by removal of extracellular calcium. CONCLUSIONS: BSIA is regulated by sAC, depends on intracellular Ca(2+) stores, and is mediated by the intrinsic apoptotic pathway; down-regulation of AE2 in primary biliary cholangitis sensitizes cholangiocytes to apoptotic insults by activating sAC, which may play a crucial role in disease pathogenesis. (Hepatology 2016;64:522-534).
Assuntos
Adenilil Ciclases/metabolismo , Apoptose , Sistema Biliar/enzimologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Ácidos e Sais Biliares/fisiologia , Sistema Biliar/citologia , Sinalização do Cálcio , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Mitocôndrias/metabolismoRESUMO
UNLABELLED: ATP11C is a homolog of ATP8B1, both of which catalyze the transport of phospholipids in biological membranes. Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type1 in humans, which is characterized by a canalicular cholestasis. Mice deficient in ATP11C are characterized by a conjugated hyperbilirubinemia and an unconjugated hypercholanemia. Here, we have studied the hypothesis that ATP11C deficiency interferes with basolateral uptake of unconjugated bile salts, a process mediated by organic anion-transporting polypeptide (OATP) 1B2. ATP11C localized to the basolateral membrane of central hepatocytes in the liver lobule of control mice. In ATP11C-deficient mice, plasma total bilirubin levels were 6-fold increased, compared to control, of which â¼65% was conjugated and â¼35% unconjugated. Plasma total bile salts were 10-fold increased and were mostly present as unconjugated species. Functional studies in ATP11C-deficient mice indicated that hepatic uptake of unconjugated bile salts was strongly impaired whereas uptake of conjugated bile salts was unaffected. Western blotting and immunofluorescence analysis demonstrated near absence of basolateral bile salt uptake transporters OATP1B2, OATP1A1, OATP1A4, and Na(+) -taurocholate-cotransporting polypeptide only in central hepatocytes of ATP11C-deficient liver. In vivo application of the proteasome inhibitor, bortezomib, partially restored expression of these proteins, but not their localization. Furthermore, we observed post-translational down-regulation of ATP11C protein in livers from cholestatic mice, which coincided with reduced OATP1B2 levels. CONCLUSIONS: ATP11C is essential for basolateral membrane localization of multiple bile salt transport proteins in central hepatocytes and may act as a gatekeeper to prevent hepatic bile salt overload. Conjugated hyperbilirubinemia and unconjugated hypercholanemia and loss of OATP expression in ATP11C-deficient liver strongly resemble the characteristics of Rotor syndrome, suggesting that mutations in ATP11C can predispose to Rotor syndrome. (Hepatology 2016;64:161-174).
Assuntos
Adenosina Trifosfatases/metabolismo , Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Adenosina Trifosfatases/genética , Animais , Bilirrubina/sangue , Regulação para Baixo , Feminino , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND & AIMS: ATP8B1 deficiency is an autosomal recessive liver disease characterized by intrahepatic cholestasis. ATP8B1 mutation p.I661T, the most frequent mutation in European patients, results in protein misfolding and impaired targeting to the plasma membrane. Similarly, mutations in cystic fibrosis transmembrane conductance regulator (CFTR), associated with cystic fibrosis, impair protein folding and trafficking. The aim of this study was to investigate whether compounds that rescue CFTR F508del trafficking are capable of improving p.I661T-ATP8B1 plasma membrane expression. METHODS: The effect of CFTR corrector compounds on plasma membrane expression of p.I661T-ATP8B1 was evaluated by cell surface biotinylation and immunofluorescence. ATPase activity was evaluated of a purified analogue protein carrying a mutation at the matching position (p.L622T-ATP8A2). RESULTS: The clinically used compounds, 4-phenylbutyric acid (4-PBA), suberoylanilide hydroxamic acid (SAHA) and N-butyldeoxynojirimycin (NB-DNJ) improved p.I661T-ATP8B1 plasma membrane targeting. Compounds C4, C5, C13 and C17 also significantly increased plasma membrane expression of p.I661T-ATP8B1. SAHA and compound C17 upregulated ATP8B1 transcription. p.I661T-ATP8B1 was partly targeted to the canalicular membrane in polarized cells, which became more evident upon treatment with SAHA and/or C4. p.L622T-ATP8A2 showed phospholipid-induced ATPase activity, suggesting that mutations at a matching position in ATP8B1 do not block functionality. Combination therapy of SAHA and compound C4 resulted in an additional improvement of ATP8B1 cell surface abundance. CONCLUSIONS: This study shows that several CFTR correctors can improve trafficking of p.I661T-ATP8B1 to the plasma membrane in vitro. Hence, these compounds may be suitable to be part of a future therapy for ATP8B1 deficiency and other genetic disorders associated with protein misfolding. LAY SUMMARY: Compounds that improve the cellular machinery dealing with protein homeostasis (proteostasis) and allow for proper folding of proteins with (mild) missense mutations are called proteostasis regulators (Balch, Science 2008). Such compounds are potentially of high therapeutic value for many (liver) diseases. In this manuscript, we investigated whether compounds identified in screens as CFTR folding correctors are actually proteostasis regulators and thus have a broader application in other protein folding diseases. Using these compounds, we could indeed show improved trafficking to the (apical) plasma membrane of a mutated ATP8B1 protein, carrying the p.I661T missense mutation. This is the most frequently identified mutation in this rare cholestatic disorder. Importantly, ATP8B1 shows no similarity to CFTR. These data are important in providing support for the concept that rare, genetic liver diseases can potentially be treated using a generalized strategy.
Assuntos
Adenosina Trifosfatases/fisiologia , Colestase Intra-Hepática/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Polaridade Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Ácidos Hidroxâmicos/farmacologia , Fenilbutiratos/farmacologia , Dobramento de Proteína , Transporte Proteico , VorinostatRESUMO
During yeast cell polarization localization of the small GTPase, cell division control protein 42 homologue (Cdc42) is clustered to ensure the formation of a single bud. Here we show that the disease-associated flippase ATPase class I type 8b member 1 (ATP8B1) enables Cdc42 clustering during enterocyte polarization. Loss of this regulation results in increased apical membrane size with scattered apical recycling endosomes and permits the formation of more than one apical domain, resembling the singularity defect observed in yeast. Mechanistically, we show that to become apically clustered, Cdc42 requires the interaction between its polybasic region and negatively charged membrane lipids provided by ATP8B1. Disturbing this interaction, either by ATP8B1 depletion or by introduction of a Cdc42 mutant defective in lipid binding, increases Cdc42 mobility and results in apical membrane enlargement. Re-establishing Cdc42 clustering, by tethering it to the apical membrane or lowering its diffusion, restores normal apical membrane size in ATP8B1-depleted cells. We therefore conclude that singularity regulation by Cdc42 is conserved between yeast and human and that this regulation is required to maintain healthy tissue architecture.
Assuntos
Adenosina Trifosfatases/metabolismo , Polaridade Celular/fisiologia , Enterócitos/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transdução de Sinais/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/genética , Animais , Linhagem Celular , Enterócitos/citologia , Humanos , Lipídeos de Membrana/genética , Camundongos , Proteínas de Transferência de Fosfolipídeos/genética , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075-11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.