Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686825

RESUMO

The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterised by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the two genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-hour cycle between the two species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.

2.
Mol Ecol ; 32(17): 4777-4790, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452724

RESUMO

Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups.


Assuntos
Orchidaceae , Áreas Alagadas , Ecossistema , Poliploidia , Aclimatação , Orchidaceae/genética
3.
Ann Bot ; 131(1): 123-142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029647

RESUMO

BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.


Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Solanaceae/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Austrália , Poliploidia , Verduras/genética , Cromossomos de Plantas
4.
Mol Biol Evol ; 39(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35904928

RESUMO

To provide insights into the fate of transposable elements (TEs) across timescales in a post-polyploidization context, we comparatively investigate five sibling Dactylorhiza allotetraploids (Orchidaceae) formed independently and sequentially between 500 and 100K generations ago by unidirectional hybridization between diploids D. fuchsii and D. incarnata. Our results first reveal that the paternal D. incarnata genome shows a marked increased content of LTR retrotransposons compared to the maternal species, reflected in its larger genome size and consistent with a previously hypothesized bottleneck. With regard to the allopolyploids, in the youngest D. purpurella both genome size and TE composition appear to be largely additive with respect to parents, whereas for polyploids of intermediate ages we uncover rampant genome expansion on a magnitude of multiple entire genomes of some plants such as Arabidopsis. The oldest allopolyploids in the series are not larger than the intermediate ones. A putative tandem repeat, potentially derived from a non-autonomous miniature inverted-repeat TE (MITE) drives much of the genome dynamics in the allopolyploids. The highly dynamic MITE-like element is found in higher proportions in the maternal diploid, D. fuchsii, but is observed to increase in copy number in both subgenomes of the allopolyploids. Altogether, the fate of repeats appears strongly regulated and therefore predictable across multiple independent allopolyploidization events in this system. Apart from the MITE-like element, we consistently document a mild genomic shock following the allopolyploidizations investigated here, which may be linked to their relatively large genome sizes, possibly associated with strong selection against further genome expansions.


Assuntos
Orchidaceae , Irmãos , Elementos de DNA Transponíveis/genética , Diploide , Genoma de Planta , Humanos , Orchidaceae/genética , Poliploidia , Áreas Alagadas
5.
Plant J ; 111(1): 7-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535507

RESUMO

One of the most commonly encountered and frequently cited laboratory organisms worldwide is classified taxonomically as Nicotiana benthamiana (Solanaceae), an accession of which, typically referred to as LAB, is renowned for its unique susceptibility to a wide range of plant viruses and hence capacity to be transformed using a variety of methods. This susceptibility is the result of an insertion and consequent loss of function in the RNA-dependent RNA polymerase 1 (Rdr1) gene. However, the origin and age of LAB and the evolution of N. benthamiana across its wide distribution in Australia remain relatively underexplored. Here, we have used multispecies coalescent methods on genome-wide single nucleotide polymorphisms (SNPs) to assess species limits, phylogenetic relationships and divergence times within N. benthamiana. Our results show that the previous taxonomic concept of this species in fact comprises five geographically, morphologically and genetically distinct species, one of which includes LAB. We provide clear evidence that LAB is closely related to accessions collected further north in the Northern Territory; this species split much earlier, c. 1.1 million years ago, from their common ancestor than the other four in this clade and is morphologically the most distinctive. We also found that the Rdr1 gene insertion is variable among accessions from the northern portions of the Northern Territory. Furthermore, this long-isolated species typically grows in sheltered sites in subtropical/tropical monsoon areas of northern Australia, contradicting the previously advanced hypothesis that this species is an extremophile that has traded viral resistance for precocious development.


Assuntos
Nicotiana , RNA Polimerase Dependente de RNA , Austrália , Genômica , Filogenia , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
6.
Front Plant Sci ; 12: 706574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335669

RESUMO

Background and Aims: Quantifying genetic variation is fundamental to understand a species' demographic trajectory and its ability to adapt to future changes. In comparison with diploids, however, genetic variation and factors fostering genetic divergence remain poorly studied in polyploids due to analytical challenges. Here, by employing a ploidy-aware framework, we investigated the genetic structure and its determinants in polyploid Alkanna tinctoria (Boraginaceae), an ancient medicinal herb that is the source of bioactive compounds known as alkannin and shikonin (A/S). From a practical perspective, such investigation can inform biodiversity management strategies. Methods: We collected 14 populations of A. tinctoria within its main distribution range in Greece and genotyped them using restriction site-associated DNA sequencing. In addition, we included two populations of A. sieberi. By using a ploidy-aware genotype calling based on likelihoods, we generated a dataset of 16,107 high-quality SNPs. Classical and model-based analysis was done to characterize the genetic structure within and between the sampled populations, complemented by genome size measurements and chromosomal counts. Finally, to reveal the drivers of genetic structure, we searched for associations between allele frequencies and spatial and climatic variables. Key Results: We found support for a marked regional structure in A. tinctoria along a latitudinal gradient in line with phytogeographic divisions. Several analyses identified interspecific admixture affecting both mainland and island populations. Modeling of spatial and climatic variables further demonstrated a larger contribution of neutral processes and a lesser albeit significant role of selection in shaping the observed genetic structure in A. tinctoria. Conclusion: Current findings provide evidence of strong genetic structure in A. tinctoria mainly driven by neutral processes. The revealed natural genomic variation in Greek Alkanna can be used to further predict variation in A/S production, whereas our bioinformatics approach should prove useful for the study of other non-model polyploid species.

7.
Syst Biol ; 69(1): 91-109, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127939

RESUMO

Disentangling phylogenetic relationships proves challenging for groups that have evolved recently, especially if there is ongoing reticulation. Although they are in most cases immediately isolated from diploid relatives, sets of sibling allopolyploids often hybridize with each other, thereby increasing the complexity of an already challenging situation. Dactylorhiza (Orchidaceae: Orchidinae) is a genus much affected by allopolyploid speciation and reticulate phylogenetic relationships. Here, we use genetic variation at tens of thousands of genomic positions to unravel the convoluted evolutionary history of Dactylorhiza. We first investigate circumscription and relationships of diploid species in the genus using coalescent and maximum likelihood methods, and then group 16 allotetraploids by maximum affiliation to their putative parental diploids, implementing a method based on genotype likelihoods. The direction of hybrid crosses is inferred for each allotetraploid using information from maternally inherited plastid RADseq loci. Starting from age estimates of parental taxa, the relative ages of these allotetraploid entities are inferred by quantifying their genetic similarity to the diploids and numbers of private alleles compared with sibling allotetraploids. Whereas northwestern Europe is dominated by young allotetraploids of postglacial origins, comparatively older allotetraploids are distributed further south, where climatic conditions remained relatively stable during the Pleistocene glaciations. Our bioinformatics approach should prove effective for the study of other naturally occurring, nonmodel, polyploid plant complexes.


Assuntos
Orchidaceae/classificação , Orchidaceae/genética , Filogenia , Diploide , Europa (Continente) , Tetraploidia
8.
Mol Phylogenet Evol ; 139: 106572, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351183

RESUMO

The Eurasian steppes occupy a significant portion of the worldwide land surface and their biota have been affected by specific past range dynamics driven by ice ages-related climatic fluctuations. The dynamic alterations in conditions during the Pleistocene often triggered reticulate evolution and whole genome duplication events. Employing genomic, genetic and cytogenetic tools as well as morphometry we investigate the intricate evolution of Astragalus onobrychis, a widespread Eurasian steppe plant with diploid, tetraploid and octoploid cytotypes. To analyse the heteroploid RADseq dataset we employ both genotype-based and genotype-free methods that result in highly consistent results, and complement our inference with information from the plastid ycf1 region. We uncover a complex and reticulate evolutionary history, including at least one auto-tetraploidization event and two allo-octoploidization events; one of them involved also genetic contributions from other species, most likely A. goktschaicus. The present genetic structure points to the existence of four main clades within A. onobrychis, which only partly correspond to different ploidies. Time-calibrated diffusion models suggest that diversification within A. onobrychis was associated with ice age-related climatic fluctuations during the last million years. We finally argue for the usefulness of uniparentally inherited plastid markers, even in the genomic era, especially when investigating heteroploid systems.


Assuntos
Astrágalo/genética , Cromossomos de Plantas , Ásia , Astrágalo/anatomia & histologia , Astrágalo/classificação , DNA de Plantas/química , DNA de Plantas/metabolismo , Europa (Continente) , Filogenia , Plastídeos/genética , Poliploidia , Análise de Componente Principal
9.
Ann Bot ; 124(3): 481-497, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31231754

RESUMO

BACKGROUND AND AIMS: The terrestrial orchid genus Epipactis has become a model system for the study of speciation via transitions from allogamy to autogamy, but close phylogenetic relationships have proven difficult to resolve through Sanger sequencing. METHODS: We analysed with restriction site-associated sequencing (RAD-seq) 108 plants representing 29 named taxa that together span the genus, focusing on section Epipactis. Our filtered matrix of 12 543 single nucleotide polymorphisms was used to generate an unrooted network and a rooted, well-supported likelihood tree. We further inferred genetic structure through a co-ancestry heat map and admixture analysis, and estimated inbreeding coefficients per sample. KEY RESULTS: The 27 named taxa of the ingroup were resolved as 11 genuine, geographically widespread species: four dominantly allogamous and seven dominantly autogamous. A single comparatively allogamous species, E. helleborine, is the direct ancestor of most of the remaining species, though one of the derived autogams has generated one further autogamous species. An assessment of shared ancestry suggested only sporadic hybridization between the re-circumscribed species. Taxa with the greatest inclination towards autogamy show less, if any, admixture, whereas the gene pools of more allogamous species contain a mixture alleles found in the autogams. CONCLUSIONS: This clade is presently undergoing an evolutionary radiation driven by a wide spectrum of genotypic, phenotypic and environmental factors. Epipactis helleborine has also frequently generated many local variants showing inclinations toward autogamy (and occasionally cleistogamy), best viewed as incipient speciation from within the genetic background provided by E. helleborine, which thus becomes an example of a convincingly paraphyletic species. Autogams are often as widespread and ecologically successful as allogams.


Assuntos
Orchidaceae , Evolução Biológica , Especiação Genética , Hibridização Genética , Filogenia , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 136: 21-28, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914398

RESUMO

The orchid genus Nigritella is closely related to Gymnadenia and has from time to time been merged with the latter. Although Nigritella is morphologically distinct, it has been suggested that the separating characters are easily modifiable and subject to rapid evolutionary change. So far, molecular phylogenetic studies have either given support for the inclusion of Nigritella in Gymnadenia, or for their separation as different genera. To resolve this issue, we analysed data obtained from Restriction-site associated DNA sequencing, RADseq, which provides a large number of SNPs distributed across the entire genome. To analyse samples of different ploidies, we take an analytical approach of building a reduced genomic reference based on de novo RADseq loci reconstructed from diploid accessions only, which we further use to map and call variants across both diploid and polyploid accessions. We found that Nigritella is distinct from Gymnadenia forming a well-supported separate clade, and that genetic diversity within Gymnadenia is high. Within Gymnadenia, taxa characterized by an ITS-E ribotype (G. conopsea s.str. (early flowering) and G. odoratissima), are divergent from taxa characterized by ITS-L ribotype (G. frivaldii, G. densiflora and late flowering G. conopsea). Gymnigritella runei is confirmed to have an allopolyploid origin from diploid Gymnadenia conopsea and tetraploid N. nigra ssp. nigra on the basis of RADseq data. Within Nigritella the aggregation of polyploid members into three clear-cut groups as suggested by allozyme and nuclear microsatellite data was further supported.


Assuntos
Orchidaceae/genética , Filogenia , Mapeamento por Restrição , Análise de Sequência de DNA , Geografia , Funções Verossimilhança , Análise de Componente Principal
11.
Ecol Lett ; 20(12): 1576-1590, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027325

RESUMO

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.


Assuntos
Ecologia , Epigênese Genética , Plantas , Metilação de DNA , Ecossistema
12.
Syst Biol ; 65(2): 212-27, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26430059

RESUMO

Due to its special geological history, the New Caledonian Archipelago is a mosaic of soil types, and in combination with climatic conditions this results in a heterogeneous environment across relatively small distances. A group of over 20 endemic species of Diospyros (Ebenaceae) has rapidly and recently radiated on the archipelago after a single long-distance dispersal event. Most of the Diospyros species in the radiating group are morphologically and ecologically well differentiated, but they exhibit low levels of DNA variability. To investigate the processes that shaped the diversification of this group we employed restriction site associated DNA sequencing (RADseq). Over 8400 filtered SNPs generally confirm species delimitations and produce a well-supported phylogenetic tree. Our analyses document local introgression, but only a limited potential for gene flow over longer distances. The phylogenetic relationships point to an early regional clustering among populations and species, indicating that allopatric speciation with respect to macrohabitat (i.e., climatic conditions) may have had a role in the initial differentiation within the group. A later, more rapid radiation involved divergence with respect to microhabitat (i.e., soil preference). Several sister species in the group show a parallel divergence in edaphic preference. Searches for genomic regions that are systematically differentiated in this replicated phenotypic divergence pointed to loci potentially involved in ion binding and cellular transport. These loci appear meaningful in the context of adaptations to soil types that differ in heavy-metal and mineral content. Identical nucleotide changes affected only two of these loci, indicating that introgression may have played a limited role in their evolution. Our results suggest that both allopatric diversification and (parapatric) ecological divergence shaped successive rounds of speciation in the Diospyros radiation on New Caledonia.


Assuntos
Adaptação Fisiológica , Diospyros/classificação , Diospyros/fisiologia , Especiação Genética , Genoma de Planta/genética , Biodiversidade , DNA de Plantas/genética , Variação Genética , Nova Caledônia , Solo/química , Clima Tropical
13.
New Phytol ; 204(4): 1000-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25081588

RESUMO

Hybridisation and polyploidy are major forces contributing to plant speciation. Homoploid (2x) and heteroploid (3x) hybrids, however, represent critical stages for evolution due to disturbed meiosis and reduced fertility. Apomixis--asexual reproduction via seeds--can overcome hybrid sterility, but requires several concerted alterations of developmental pathways to result in functional seed formation. Here, we analyse the reproductive behaviours of homo- and heteroploid synthetic hybrids from crosses between sexual diploid and tetraploid Ranunculus auricomus species to test the hypothesis that developmental asynchrony in hybrids triggers the shift to apomictic reproduction. Evaluation of male and female gametophyte development, viability and functionality of gametes shows developmental asynchrony, whereas seed set and germinability indicate reduced fitness in synthetic hybrids compared to sexual parents. We present the first experimental evidence for spontaneous apospory in most hybrids as an alternative pathway to meiosis, and the appearance of functional apomictic seeds in triploids. Bypassing meiosis permits these triploid genotypes to form viable seed and new polyploid progeny. Asynchronous development causes reduced sexual seed set and emergence of apospory in synthetic Ranunculus hybrids. Apomixis is functional in triploids and associated with drastic meiotic abnormalities. Selection acts to stabilise developmental patterns and to tolerate endosperm dosage balance shifts which facilitates successful seed set and establishment of apomictic lineages.


Assuntos
Apomixia/genética , Hibridização Genética , Meiose , Óvulo Vegetal/genética , Tubo Polínico/genética , Poliploidia , Ranunculus/genética , Tubo Polínico/crescimento & desenvolvimento , Ranunculus/citologia , Sementes/genética , Tetraploidia
14.
PLoS One ; 9(7): e103003, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062066

RESUMO

The reconstruction of reticulate evolutionary histories in plants is still a major methodological challenge. Sequences of the ITS nrDNA are a popular marker to analyze hybrid relationships, but variation of this multicopy spacer region is affected by concerted evolution, high intraindividual polymorphism, and shifts in mode of reproduction. The relevance of changes in secondary structure is still under dispute. We aim to shed light on the extent of polymorphism within and between sexual species and their putative natural as well as synthetic hybrid derivatives in the Ranunculus auricomus complex to test morphology-based hypotheses of hybrid origin and parentage of taxa. We employed direct sequencing of ITS nrDNA from 68 individuals representing three sexuals, their synthetic hybrids and one sympatric natural apomict, as well as cloning of ITS copies in four representative individuals, RNA secondary structure analysis, and landmark geometric morphometric analysis on leaves. Phylogenetic network analyses indicate additivity of parental ITS variants in both synthetic and natural hybrids. The triploid synthetic hybrids are genetically much closer to their maternal progenitors, probably due to ploidy dosage effects, although exhibiting a paternal-like leaf morphology. The natural hybrids are genetically and morphologically closer to the putative paternal progenitor species. Secondary structures of ITS1-5.8S-ITS2 were rather conserved in all taxa. The observed similarities in ITS polymorphisms suggest that the natural apomict R. variabilis is an ancient hybrid of the diploid sexual species R. notabilis and the sexual species R. cassubicifolius. The additivity pattern shared by R. variabilis and the synthetic hybrids supports an evolutionary and biogeographical scenario that R. variabilis originated from ancient hybridization. Concerted evolution of ITS copies in R. variabilis is incomplete, probably due to a shift to asexual reproduction. Under the condition of comprehensive inter- and intraspecific sampling, ITS polymorphisms are powerful for elucidating reticulate evolutionary histories.


Assuntos
DNA Intergênico/genética , Evolução Molecular , Hibridização Genética , Ranunculus/genética , Filogeografia , Polimorfismo Genético , Poliploidia , Reprodução Assexuada/genética
15.
BMC Evol Biol ; 13: 269, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24330478

RESUMO

BACKGROUND: Radiation in some plant groups has occurred on islands and due to the characteristic rapid pace of phenotypic evolution, standard molecular markers often provide insufficient variation for phylogenetic reconstruction. To resolve relationships within a clade of 21 closely related New Caledonian Diospyros species and evaluate species boundaries we analysed genome-wide DNA variation via amplified fragment length polymorphisms (AFLP). RESULTS: A neighbour-joining (NJ) dendrogram based on Dice distances shows all species except D. minimifolia, D. parviflora and D. vieillardii to form unique clusters of genetically similar accessions. However, there was little variation between these species clusters, resulting in unresolved species relationships and a star-like general NJ topology. Correspondingly, analyses of molecular variance showed more variation within species than between them. A Bayesian analysis with BEAST produced a similar result. Another Bayesian method, this time a clustering method, Structure, demonstrated the presence of two groups, highly congruent with those observed in a principal coordinate analysis (PCO). Molecular divergence between the two groups is low and does not correspond to any hypothesised taxonomic, ecological or geographical patterns. CONCLUSIONS: We hypothesise that such a pattern could have been produced by rapid and complex evolution involving a widespread progenitor for which an initial split into two groups was followed by subsequent fragmentation into many diverging populations, which was followed by range expansion of then divergent entities. Overall, this process resulted in an opportunistic pattern of phenotypic diversification. The time since divergence was probably insufficient for some species to become genetically well-differentiated, resulting in progenitor/derivative relationships being exhibited in a few cases. In other cases, our analyses may have revealed evidence for the existence of cryptic species, for which more study of morphology and ecology are now required.


Assuntos
Diospyros/classificação , Diospyros/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Evolução Biológica , Análise por Conglomerados , DNA de Plantas/genética , Ecologia , Nova Caledônia , Filogeografia , Polimorfismo Genético
16.
BMC Evol Biol ; 11: 113, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21521507

RESUMO

BACKGROUND: Hybridization and polyploidy are potent forces that have regularly stimulated plant evolution and adaptation. Dactylorhiza majalis s.s., D. traunsteineri s.l. and D. ebudensis are three allopolyploid species of a polyploid complex formed through unidirectional (and, in the first two cases, recurrent) hybridization between the widespread diploids D. fuchsii and D. incarnata. Differing considerably in geographical extent and ecological tolerance, the three allopolyploids together provide a useful system to explore genomic responses to allopolyploidization and reveal their role in adaptation to contrasting environments. RESULTS: Analyses of cDNA-AFLPs show a significant increase in the range of gene expression of these allopolyploid lineages, demonstrating higher potential for phenotypic plasticity than is shown by either parent. Moreover, allopolyploid individuals express significantly more gene variants (including novel alleles) than their parents, providing clear evidence of increased biological complexity following allopolyploidization. More genetic mutations seem to have accumulated in the older D. majalis compared with the younger D. traunsteineri since their respective formation. CONCLUSIONS: Multiple origins of the polyploids contribute to differential patterns of gene expression with a distinct geographic structure. However, several transcripts conserved within each allopolyploid taxon differ between taxa, indicating that habitat preferences shape similar expression patterns in these independently formed tetraploids. Statistical signals separate several transcripts - some of them novel in allopolyploids - that appear correlated with adaptive traits and seem to play a role favouring the persistence of individuals in their native environments. In addition to stabilizing the allopolyploid genome, genetic and epigenetic alterations are key determinants of adaptive success of the new polyploid species after recurrent allopolyploidization events, potentially triggering reproductive isolation between the resulting lineages.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Aclimatação , Evolução Biológica , DNA Complementar/genética , Ecossistema , Orchidaceae/classificação , Poliploidia
17.
Mol Biol Evol ; 27(11): 2465-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20551043

RESUMO

Epigenetic information includes heritable signals that modulate gene expression but are not encoded in the primary nucleotide sequence. We have studied natural epigenetic variation in three allotetraploid sibling orchid species (Dactylorhiza majalis s.str, D. traunsteineri s.l., and D. ebudensis) that differ radically in geography/ecology. The epigenetic variation released by genome doubling has been restructured in species-specific patterns that reflect their recent evolutionary history and have an impact on their ecology and evolution, hundreds of generations after their formation. Using two contrasting approaches that yielded largely congruent results, epigenome scans pinpointed epiloci under divergent selection that correlate with eco-environmental variables, mainly related to water availability and temperature. The stable epigenetic divergence in this group is largely responsible for persistent ecological differences, which then set the stage for species-specific genetic patterns to accumulate in response to further selection and/or drift. Our results strongly suggest a need to expand our current evolutionary framework to encompass a complementary epigenetic dimension when seeking to understand population processes that drive phenotypic evolution and adaptation.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética , Orchidaceae/genética , Orchidaceae/fisiologia , Poliploidia , Teorema de Bayes , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos/genética , Polimorfismo Genético , Seleção Genética
18.
New Phytol ; 182(2): 507-518, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19220761

RESUMO

Hybridization and polyploidy are now hypothesized to have regularly stimulated speciation in angiosperms, but individual or combined involvement of these two processes seems to involve significant differences in pathways of formation, establishment and evolutionary consequences of resulting lineages. We evaluate here the classical cytological hypothesis that ploidy in hybrid speciation is governed by the extent of chromosomal rearrangements among parental species. Within a phylogenetic framework, we calculate genetic divergence indices for 50 parental species pairs and use these indices as surrogates for the overall degree of genomic divergence (that is, as proxy for assessments of dissimilarity of the parental chromosomes). The results confirm that genomic differentiation between progenitor taxa influences the likelihood of diploid (homoploid) versus polyploid hybrid speciation because genetic divergence between parents of polyploids is found to be significantly greater than in the case of homoploid hybrid species. We argue that this asymmetric relationship may be reinforced immediately after hybrid formation, during stabilization and establishment. Underlying mechanisms potentially producing this pattern are discussed.


Assuntos
Especiação Genética , Genoma de Planta , Hibridização Genética , Magnoliopsida/genética , Ploidias , Cromossomos de Plantas , Magnoliopsida/classificação
19.
Taxon ; 58(4): 1194-1215, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20401184

RESUMO

The Ranunculus auricomus complex is an interesting model system for studying the evolution and diversity of apomictic polyploid complexes. It comprises hundreds of agamospecies, usually referred to two distinct morphotypes (traditionally named "R. auricomus" and "R. cassubicus") which are connected by several intermediate forms. Here we try to elucidate the evolution of apomictic "cassubicus" morphotypes and we test criteria for different classification concepts by combining the information of molecular phylogenetic, morphological, karyological and population genetic data (AFLPs, amplified fragment length polymorphism). Phylogenetic analysis based on sequences of the nrDNA ITS and plastid data (matK, trnk, psbJ-psbA) suggest a deep split between the diploid sexual species R. notabilis ("auricomus" morphotype) from the closely related allopatric taxa R. cassubicifolius and R. carpaticola ("cassubicus"). The apomictic "cassubicus" morphotypes are not monophyletic, as one, R. hungaricus, groups with R. notabilis, which may be due to hybrid origin. Morphometric studies and ploidy level determinations via Feulgen densitometry show a transition from 4x R. hungaricus to the 6x apomictic hybrid derivatives of R. cassubicifolius and R. carpaticola. In two accessions, AFLPs and flow cytometric data suggest local gene flow among different apomictic polyploid morphotypes. Frequent facultative sexuality of apomicts may increase genetic diversity by continuous formation of new cytotypes, local hybridization and introgression, which obstructs the fixation of distinct agamospecies. We conclude that "R. cassubicus" and "R. auricomus" cannot be regarded as species but should be treated as either informal groups, or as (notho)taxa at the sectional level. To reflect the different evolutionary processes involved, we propose a separate classification of the sexual species, R. notabilis and the closely related species pair R. cassubicifolius and R. carpaticola. Based on these well-defined biological species, the apomictic biotypes can be classified as nothotaxa.

20.
Taxon ; 56(3): 649-56, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21082042

RESUMO

Hybridization and polyploidization are now recognized as major phenomena in the evolution of plants, promoting genetic diversity, adaptive radiation and speciation. Modern molecular techniques have recently provided evidence that allopolyploidy can induce several types of genetic and epigenetic events that are of critical importance for the evolutionary success of hybrids: (1) chromosomal rearrangements within one or both parental genomes contribute toward proper meiotic pairing and isolation of the hybrid from its progenitors; (2) demethylation and activation of dormant transposable elements may trigger insertional mutagenesis and changes in local patterns of gene expression, facilitating rapid genomic reorganisation; (3) rapid and reproducible loss of low copy DNA sequence appears to result in further differentiation of homoeologous chromosomes; and (4) organ-specific up- or down-regulation of one of the duplicated genes, resulting in unequal expression or silencing one copy. All these alterations also have the potential, while stabilizing allopolyploid genomes, to produce novel expression patterns and new phenotypes, which together with increased heterozygosity and gene redundancy might confer on hybrids an elevated evolutionary potential, with effects at scales ranging from molecular to ecological. Although important advances have been made in understanding genomic responses to allopolyploidization, further insights are still expected to be gained in the near future, such as the direction and nature of the diploidization process, functional relevance of gene expression alterations, molecular mechanisms that result in adaptation to different ecologies/habitats, and ecological and evolutionary implications of recurrent polyploidization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA