Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
STAR Protoc ; 3(3): 101475, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35755125

RESUMO

EGFR cell surface density, stability, internalization, and recycling can be measured by cell surface ELISA (cs-ELISA). Performing this experiment on ice impedes receptor internalization; thus the physiological cell surface receptor levels can be measured by cs-ELISA. Cell surface EGFR levels are detected by measuring Amplex Red fluorescence intensity. Although cell surface receptor levels can be measured by flow cytometry, cs-ELISA does not include cell dissociation steps that might affect cell surface receptor levels. For complete details on the use and execution of this protocol, please refer to Kazan et al. (2019).


Assuntos
Receptores ErbB , Receptores de Superfície Celular , Membrana Celular/metabolismo , Ensaio de Imunoadsorção Enzimática , Receptores ErbB/metabolismo , Citometria de Fluxo , Receptores de Superfície Celular/metabolismo
2.
Oncogene ; 41(12): 1701-1717, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35110681

RESUMO

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias de Mama Triplo Negativas , Anticorpos Monoclonais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Imunoconjugados/efeitos adversos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
3.
Oncotarget ; 13: 173-181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070081

RESUMO

The 7th Birt-Hogg-Dubé (BHD) International Symposium convened virtually in October 2021. The meeting attracted more than 200 participants internationally and highlighted recent findings in a variety of areas, including genetic insight and molecular understanding of BHD syndrome, structure and function of the tumor suppressor Folliculin (FLCN), therapeutic and clinical advances as well as patients' experiences living with this malady.


Assuntos
Síndrome de Birt-Hogg-Dubé , Síndrome de Birt-Hogg-Dubé/genética , Humanos
4.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779410

RESUMO

Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Neoplasias da Mama/patologia , Neovascularização Patológica/prevenção & controle , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Efeito Warburg em Oncologia , Proteínas Quinases Ativadas por AMP/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Fosforilação Oxidativa
5.
Sci Rep ; 11(1): 21268, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711912

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.


Assuntos
Autofagia/genética , Hepatite/etiologia , Hepatite/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Transdução de Sinais , Proteínas Supressoras de Tumor/deficiência , Animais , Biomarcadores , Biópsia , Biologia Computacional , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Hepatite/patologia , Imuno-Histoquímica , Cirrose Hepática/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transcriptoma
6.
Front Cell Dev Biol ; 9: 667311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981707

RESUMO

Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/ß, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/ß. Other pathways and cellular processes regulated by FLCN will be briefly discussed.

7.
Autophagy ; 17(12): 3957-3975, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33734022

RESUMO

Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.Abbreviations: ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais/genética , Ativação Transcricional
8.
Cell Rep ; 26(13): 3613-3628.e6, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917316

RESUMO

TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Inata , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Resistência à Doença , Imunidade Inata/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Biochem Cell Biol ; 97(1): 68-72, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29879361

RESUMO

Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.


Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Neoplasias/fisiopatologia , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Transporte Proteico , Relação Estrutura-Atividade
10.
Sci Rep ; 8(1): 8414, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849089

RESUMO

Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A (eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide Synthase (iNOS) mRNA. Here we show that hippuristanol, a compound that impedes eIF4A in a manner distinct from PatA, similarly inhibits the iNOS/NO pathway and cytokine-induced muscle wasting. Furthermore, we show that hippuristanol perturbs the activation of the STAT3 pathway and expression of STAT3-gene targets such as IL-6. The decreased activation of STAT3, which resulted from a decrease in STAT3 protein expression, was due to the inhibition of STAT3 translation as there were no changes in STAT3 mRNA levels. These effects are likely dependent on the inhibition of eIF4A activity since we observed similar results using PatA. Our results identify the inhibition of eIF4A-responsive transcripts, such as STAT3, as a viable approach to alleviate cachexia.


Assuntos
Citocinas/farmacologia , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Compostos de Epóxi/farmacologia , Interleucina-6/metabolismo , Macrolídeos/farmacologia , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Esteróis/farmacologia , Tiazóis/farmacologia
11.
EMBO Mol Med ; 10(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29844217

RESUMO

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Caquexia/prevenção & controle , Metformina/uso terapêutico , Proteínas Quinases/metabolismo , Ribonucleotídeos/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Aminoimidazol Carboxamida/uso terapêutico , Animais , Caquexia/etiologia , Linhagem Celular , Ativação Enzimática , Inflamação/complicações , Interferon gama/antagonistas & inibidores , Masculino , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Neoplasias Experimentais/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Quinases/efeitos dos fármacos , Choque Séptico/induzido quimicamente , Choque Séptico/complicações , Fator de Necrose Tumoral alfa/antagonistas & inibidores
12.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727621

RESUMO

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Assuntos
Autofagia/fisiologia , Jejum/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Autofagossomos/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais/fisiologia
13.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29592859

RESUMO

Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells. We show that constitutive exposure to stress induces the formation of stress granules (SGs) in proliferative and presenescent cells, but not in fully senescent cells. Stress granule assembly alone is sufficient to decrease the number of senescent cells without affecting the expression of bona fide senescence markers. SG-mediated inhibition of senescence is associated with the recruitment of the plasminogen activator inhibitor-1 (PAI-1), a known promoter of senescence, to these entities. PAI-1 localization to SGs increases the translocation of cyclin D1 to the nucleus, promotes RB phosphorylation, and maintains a proliferative, non-senescent state. Together, our data indicate that SGs may be targets of intervention to modulate senescence in order to impair or prevent its deleterious effects.


Assuntos
Senescência Celular , Grânulos Citoplasmáticos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Estresse Fisiológico , Linhagem Celular , Núcleo Celular/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/genética
14.
Methods Mol Biol ; 1732: 57-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29480468

RESUMO

Glycogen is a main carbohydrate energy storage primarily found in fungi and animals. It is a glucose polymer that comprises α(1-4) glycosidic linkages attaching UDP-glucose molecules linearly and α(1-6) linkages branching glucose chains every 8-10 molecules to the main backbone chain. Glycogen synthase, branching enzyme, and glycogen phosphorylase are key enzymes involved in glycogen synthesis and degradation. These enzymes are tightly regulated by upstream kinases and phosphatases that respond to hormonal cues in order to coordinate storage and degradation and meet the cellular and organismal metabolic needs. The 5'AMP-activated protein kinase (AMPK) is one of the main regulators of glycogen metabolism. Despite extensive research, the role of AMPK in glycogen synthesis and degradation remains controversial. Specifically, the level and duration of AMPK activity highly influence the outcome on glycogen reserves. Here, we describe a rapid and robust protocol to efficiently measure the levels of glycogen in vitro. We use the commercially available glycogen determination kit to hydrolyze glycogen into glucose, which is oxidized to form D-gluconic acid and hydrogen peroxide that react with the OxiRed/Amplex Red probe generating a product that could be detected either in a colorimetric or fluorimetric plate format. This method is quantitative and could be used to address the role of AMPK in glycogen metabolism in cells and tissues. Summary This chapter provides a quick and reliable biochemical quantitative method to measure glycogen in cells and tissues. Briefly, this method is based on the degradation of glycogen to glucose, which is then specifically oxidized to generate a product that reacts with the OxiRed probe with maximum absorbance at 570 nm. This method is very accurate and highly sensitive. In the notes of this chapter, we shed the light on important actions that should be followed to get reliable results. We also state advantages and disadvantages of this method in comparison to other glycogen measurement techniques.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fluorometria/métodos , Glucose/metabolismo , Glicogênio/análise , Animais , Linhagem Celular Tumoral , Colorimetria/instrumentação , Colorimetria/métodos , Fluorometria/instrumentação , Glucose/química , Glicogênio/metabolismo , Humanos , Hidrólise , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Oxazinas/química , Oxirredução , Fosforilação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Cancers (Basel) ; 10(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329237

RESUMO

TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

16.
Biochem Soc Trans ; 45(3): 845-854, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620046

RESUMO

Sustained cellular signalling originated from the receptors located at the plasma membrane is widely associated with cancer susceptibility. Endosomal sorting and degradation of the cell surface receptors is therefore crucial to preventing chronic downstream signalling and tumorigenesis. Since the Endosomal Sorting Complexes Required for Transport (ESCRT) controls these processes, ESCRT components were proposed to act as tumour suppressor genes. However, the bona fide role of ESCRT components in tumorigenesis has not been clearly demonstrated. The ESCRT member HD-PTP/PTPN23 was recently identified as a novel haplo-insufficient tumour suppressor in vitro and in vivo, in mice and humans. In this mini-review, we outline the role of the ESCRT components in cancer and summarize the functions of HD-PTP/PTPN23 in tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Genes Supressores de Tumor , Humanos , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
17.
Worm ; 5(2): e1156831, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27383221

RESUMO

Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously implicated in many model organisms. However, what fuels this massive and rapid production of glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically, we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin (FLCN) responsible for the Birt-Hogg-Dubé neoplastic syndrome. Here, we comment on the dual role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte production. We further discuss the potential utilization of this mechanism by organisms in general and by human cancer cells in order to survive harsh environmental conditions and notably hyperosmotic stress.

18.
Genes Dev ; 30(9): 1034-46, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27151976

RESUMO

The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat.


Assuntos
Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores de Estrogênio/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Temperatura Baixa , Ativação Enzimática/genética , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Estrogênio/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
19.
Cell Rep ; 15(9): 1893-900, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210750

RESUMO

Endosomal sorting complexes required for transport (ESCRT) drive cell surface receptor degradation resulting in attenuation of oncogenic signaling and pointing to a tumor suppressor function. Here, we show that loss of function of an ESCRT protein (HD-PTP encoded by the PTPN23 gene, located on the tumor suppressor gene cluster 3p21.3) drives tumorigenesis in vivo. Indeed, Ptpn23(+/-) loss predisposes mice to sporadic lung adenoma, B cell lymphoma, and promotes Myc-driven lymphoma onset, dissemination, and aggressiveness. Ptpn23(+/-)-derived tumors exhibit an unaltered remaining allele and maintain 50% of HD-PTP expression. Consistent with the role of HD-PTP in attenuation of integrin recycling, cell migration, and invasion, hemizygous Ptpn23(+/-) loss increases integrin ß1-dependent B cell lymphoma survival and dissemination. Finally, we reveal frequent PTPN23 deletion and downregulation in human tumors that correlates with poor survival. Altogether, we establish HD-PTP/PTPN23 as a prominent haploinsufficient tumor suppressor gene preventing tumor progression through control of integrin trafficking.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Predisposição Genética para Doença , Haploinsuficiência/genética , Neoplasias/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Sobrevivência Celular/genética , Hemizigoto , Humanos , Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
20.
Mol Cell ; 60(2): 195-207, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474064

RESUMO

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of mitochondrial PEP-carboxykinase (PCK2). Under these conditions, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PCK2 expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo. Elevated PCK2 expression is observed in several human tumor types and enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients. Our results define a role for PCK2 in cancer cell metabolic reprogramming that promotes glucose-independent cell growth and metabolic stress resistance in human tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Gluconeogênese/genética , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Adaptação Fisiológica/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Glucose/deficiência , Glutamina/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metabolômica , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Purinas/biossíntese , Ácido Pirúvico/metabolismo , Serina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA