Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 7(3): bvad001, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36726836

RESUMO

Context: Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective: We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods: We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results: Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion: Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.

2.
J Cachexia Sarcopenia Muscle ; 13(3): 1731-1740, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35274472

RESUMO

BACKGROUND: Intensive care unit (ICU)-acquired weakness can persist beyond ICU stay and has been associated with long-term functional impairment of ICU survivors. Recently, DNA methylation alterations were found in the blood of ICU patients, partially explaining long-term developmental impairment of critically ill children. As illness-induced aberrant DNA methylation theoretically could also be involved in long-term weakness, we investigated whether the DNA methylation signature in muscle of adult critically ill patients differs from that in muscle of healthy controls. METHODS: Genome-wide methylation was determined (Infinium® HumanMethylationEPIC BeadChips) in DNA extracted from skeletal muscle biopsies that had been collected on Day 8 ± 1 in ICU from 172 EPaNIC-trial patients [66% male sex, median age 62.7 years, median body mass index (BMI) 25.9 kg/m2 ] and 20 matched healthy controls (70% male sex, median age 58.0 years, median BMI 24.4 kg/m2 ). Methylation status of individual cytosine-phosphate-guanine (CpG) sites of patients and controls was compared with F-tests, using the Benjamini-Hochberg false discovery rate to correct for multiple comparisons. Differential methylation of DNA regions was assessed with bump hunting, with 1000 permutations assessing uncertainty, expressed as family-wise error rate. Gene expression was investigated for 10 representative affected genes. RESULTS: In DNA from ICU patients, 565 CpG sites, associated with 400 unique genes, were differentially methylated as compared with controls (average difference 3.2 ± 0.1% ranging up to 16.9%, P < 0.00005). Many of the associated genes appeared highly relevant for muscle structure and function/weakness, including genes involved in myogenesis, muscle regeneration, nerve/muscle membrane excitability, muscle denervation/re-innervation, axon guidance/myelination/degeneration/regeneration, synapse function, ion channelling with especially calcium signalling, metabolism (glucose, protein, and fat), insulin signalling, neuroendocrine hormone regulation, mitochondrial function, autophagy, apoptosis, oxidative stress, Wnt signalling, transcription regulation, muscle fat infiltration during regeneration, and fibrosis. In patients as compared with controls, we also identified two hypomethylated regions, spanning 18 and 3 CpG sites in the promoters of the HIC1 and NADK2 genes, respectively (average differences 5.8 ± 0.01% and 12.1 ± 0.04%, family-wise error rate <0.05). HIC1 and NADK2 play important roles in muscle regeneration and postsynaptic acetylcholine receptors and in mitochondrial processes, respectively. Nine of 10 investigated genes containing DNA methylation alterations were differentially expressed in patients as compared with controls (P ≤ 0.03). CONCLUSIONS: Critically ill patients present with a different DNA methylation signature in skeletal muscle as compared with healthy controls, which in theory could provide a biological basis for long-term persistence of weakness in ICU survivors. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00512122, registered on 31 July 2007.


Assuntos
Estado Terminal , Metilação de DNA , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Músculo Esquelético
3.
J Cachexia Sarcopenia Muscle ; 13(1): 418-433, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994068

RESUMO

BACKGROUND: Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness. METHODS: In a mouse model of sepsis, we investigated the effects of genetic leptin inactivation in obese mice (leptin-deficient obese mice vs. diet-induced obese mice) and of leptin supplementation in lean mice (n = 110). We assessed impact on survival, body weight and composition, markers of muscle wasting and weakness, inflammation, and lipid metabolism. In human lean and overweight/obese intensive care unit (ICU) patients, we assessed markers of protein catabolism (n = 1388) and serum leptin (n = 150). RESULTS: Sepsis mortality was highest in leptin-deficient obese mice (53% vs. 23% in diet-induced obese mice and 37% in lean mice, P = 0.03). Irrespective of leptin, after 5 days of sepsis, lean mice lost double the amount of lean body mass than obese mice (P < 0.0005). Also, irrespective of leptin, obese mice maintained specific muscle force up to healthy levels (P = 0.3) whereas lean mice suffered from reduced specific muscle force (72% of healthy controls, P < 0.0002). As compared with lean septic mice, both obese septic groups had less muscle atrophy, liver amino acid catabolism, and inflammation with a 50% lower plasma TNFα increase (P < 0.005). Conversely, again mainly irrespective of leptin, obese mice lost double amount of fat mass than lean mice after 5 days of sepsis (P < 0.0001), showed signs of increased lipolysis and ketogenesis, and had higher plasma HDL and LDL lipoprotein concentrations (P ≤ 0.01 for all). Muscle fibre type composition was not altered during sepsis, but a higher atrophy sensitivity of type IIb fibres compared with IIa and IIx fibres was observed, independent of obesity or leptin. After 5 days of critical illness, serum leptin was higher (P < 0.0001) and the net waste of nitrogen (P = 0.006) and plasma urea-to-creatinine ratio (P < 0.0001) was lower in overweight/obese compared with lean ICU human patients. CONCLUSIONS: Leptin did not mediate the protective effect of obesity against sepsis-induced muscle wasting and weakness in mice. Instead, obesity-independent of leptin-attenuated inflammation, protein catabolism, and dyslipidaemia, pathways that may play a role in the observed muscle protection.


Assuntos
Dislipidemias , Sepse , Animais , Humanos , Leptina , Camundongos , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Obesidade/complicações , Sepse/complicações , Sepse/metabolismo
4.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698826

RESUMO

PURPOSE: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed. We hypothesized that treatment of sepsis with hydrocortisone (HC) aggravates this phenotype whereas CRH infusion safeguards ACTH-driven adrenocortical structure. METHODS: In a fluid-resuscitated, antibiotics-treated mouse model of prolonged sepsis, we compared the effects of HC and CRH infusion with placebo on plasma ACTH, POMC, and CORT; on markers of hypothalamic CRH and AVP signaling and pituitary POMC processing; and on the adrenocortical structure and markers of steroidogenesis. In adrenal explants, we studied the steroidogenic capacity of POMC. RESULTS: During sepsis, HC further suppressed plasma ACTH, but not POMC, predominantly by suppressing sepsis-activated CRH/AVP-signaling pathways. In contrast, in CRH-treated sepsis, plasma ACTH was normalized following restoration of pituitary POMC processing. The sepsis-induced rise in markers of adrenocortical steroidogenesis was unaltered by CRH and suppressed partially by HC, which also increased adrenal markers of inflammation. Ex vivo stimulation of adrenal explants with POMC increased CORT as effectively as an equimolar dose of ACTH. CONCLUSIONS: Treatment of sepsis with HC impaired integrity and function of the hypothalamic-pituitary-adrenal axis at the level of the pituitary and the adrenal cortex while CRH restored pituitary POMC processing without affecting the adrenal cortex. Sepsis-induced high-circulating POMC may be responsible for ongoing adrenocortical steroidogenesis despite low ACTH.


Assuntos
Hormônio Liberador da Corticotropina/administração & dosagem , Hidrocortisona/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sepse/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/química , Corticosterona/sangue , Hipotálamo/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Pró-Opiomelanocortina/química , Sepse/fisiopatologia , Transdução de Sinais
5.
Sci Rep ; 7(1): 14150, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074879

RESUMO

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which activates the unfolded protein response (UPR), mediate critical illness-induced organ failure, often affecting the liver. Autophagy is known to alleviate both and suppressed or insufficiently activated autophagy in prolonged illness has shown to associate with organ failure. Whether insufficient autophagy contributes to organ failure during critical illness by affecting these underlying mechanisms is incompletely understood. In this study, we investigated whether the inability to acutely activate hepatic autophagy during critical illness aggravates liver damage by increasing hepatic mitochondrial dysfunction and affecting the UPR. In a mouse model of critical illness, induced by surgery and sepsis, we investigated the impact of inactivating hepatic autophagy on markers of hepatic mitochondrial function, the UPR and liver damage in acute (1 day) and prolonged (3 days) critical illness. Hepatic autophagy inactivation during critical illness acutely worsened mitochondrial dysfunction and time-dependently modulated the hepatic UPR. Furthermore, autophagy inactivation aggravated markers of liver damage on both time points. In conclusion, the inability to acutely activate autophagy in liver during critical illness worsened hepatic mitochondrial damage and dysfunction, partially prohibited acute UPR activation and aggravated liver damage, indicating that autophagy is crucial in alleviating critical illness-induced organ failure.


Assuntos
Autofagia/fisiologia , Estado Terminal , Hepatopatias/patologia , Fígado/patologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Fatores de Crescimento de Fibroblastos/sangue , Hepatopatias/etiologia , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Complicações Pós-Operatórias/patologia , Sepse/complicações , Sepse/patologia , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA