Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Rep ; 12(1): 19021, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347883

RESUMO

The self-organizing potential of induced pluripotent stem cells (iPSCs) represents a promising tool for bone tissue engineering. Shear stress promotes the osteogenic differentiation of mesenchymal stem cells, leading us to hypothesize that specific shear stress could enhance the osteogenic differentiation of iPSCs. For osteogenesis, embryoid bodies were formed for two days and then maintained in medium supplemented with retinoic acid for three days, followed by adherent culture in osteogenic induction medium for one day. The cells were then subjected to shear loading (0.15, 0.5, or 1.5 Pa) for two days. Among different magnitudes tested, 0.5 Pa induced the highest levels of osteogenic gene expression and greatest mineral deposition, corresponding to upregulated connexin 43 (Cx43) and phosphorylated Erk1/2 expression. Erk1/2 inhibition during shear loading resulted in decreased osteogenic gene expression and the suppression of mineral deposition. These results suggest that shear stress (0.5 Pa) enhances the osteogenic differentiation of iPSCs, partly through Cx43 and Erk1/2 signaling. Our findings shed light on the application of shear-stress technology to improve iPSC-based tissue-engineered bone for regenerative bone therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese/genética , Conexina 43/genética , Conexina 43/metabolismo , Diferenciação Celular/genética , Células Cultivadas
2.
Sci Rep ; 12(1): 9127, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650303

RESUMO

Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFß inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFß inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.


Assuntos
Células-Tronco Mesenquimais , Fosfatidilinositol 3-Quinases , Animais , Diferenciação Celular , Cães , Insulina/farmacologia , Niacinamida/farmacologia , Taurina/farmacologia , Fator de Crescimento Transformador beta/farmacologia
3.
J Periodontal Res ; 57(4): 742-753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35510301

RESUMO

BACKGROUND: Mechanical stimuli induce the release of adenosine triphosphate into the extracellular environment by human periodontal ligament cells (hPDLCs). Extracellular adenosine triphosphate (eATP) plays the role in both inflammation and osteogenic differentiation. eATP involves in immunosuppressive action by increasing immunosuppressive molecules IDO and IFNγ expression on immune cells. However, the role of eATP on the immunomodulation of hPDLCs remains unclear. This study aimed to examine the effects of eATP on the IDO and IFNγ expression of hPDLCs and the participation of purinergic P2 receptors in this phenomenon. METHODS: hPDLCs were treated with eATP. The mRNA and protein expression of indoleamine-pyrrole 2,3-dioxygenase (IDO) and interferon-gamma (IFNγ) were determined. The role of the purinergic P2 receptor was determined using calcium chelator (EGTA) and PKC inhibitor (PKCi). Chemical inhibitors (KN62 and BBG), small interfering RNA (siRNA), and P2 X7 receptor agonist (BzATP) were used to confirm the involvement of P2 X7 receptors on IDO and IFNγ induction by hPDLCs. RESULTS: eATP significantly enhanced mRNA expression of IDO and IFNγ. Moreover, eATP increased kynurenine which is the active metabolite of tryptophan breakdown catalyzed by the IDO enzyme and significantly induced IFNγ protein expression. EGTA and PKCi reduced eATP-induced IDO and IFNγ expressions by hPDLCs, confirming the role of calcium signaling. Chemical P2 X7 inhibitors (KN62 and BBG) and siRNA targeting the P2 X7 receptor significantly inhibited the eATP-induced IDO and IFNγ production. Correspondingly, BzATP markedly increased IDO and IFNγ expression. CONCLUSION: eATP induced immunosuppressive function of hPDLCs by promoting IDO and IFNγ production via P2 X7 receptor signaling. eATP may become a promising target for periodontal regeneration by modulating immune response and further triggering tissue healing.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Ligamento Periodontal , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/farmacologia , Células Cultivadas , Ácido Egtázico/farmacologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Osteogênese , RNA Mensageiro , RNA Interferente Pequeno , Receptores Purinérgicos P2X7/metabolismo
4.
Angle Orthod ; 92(4): 555-561, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262654

RESUMO

OBJECTIVES: To investigate the effects of compressive force and/or mechanical vibration on NFATc1, DCSTAMP, and CTSK (cathepsin K) gene expression and the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in RAW 264.7 cells, a murine osteoclastic-like cell line. MATERIALS AND METHODS: RAW 264.7 cells were subjected to mechanical vibration, compressive force, or compressive force combined with vibration. Cell viability and the numbers of TRAP-positive multinucleated cells were evaluated. NFATc1, DCSTAMP, and CTSK gene expressions were analyzed using real-time quantitative reverse transcription polymerase chain reaction. RESULTS: Compressive force combined with mechanical vibration significantly increased the numbers of TRAP-positive multinucleated cells but did not significantly affect cell viability. In addition, compressive force combined with mechanical vibration significantly increased NFATc1, DCSTAMP, and CTSK mRNA expression compared with compressive force or vibration alone. CONCLUSIONS: Compressive force combined with mechanical vibration induces osteoclastogenesis and upregulates NFATc1, DCSTAMP, and CTSK gene expression in RAW 264.7 cells. These results provide more insight into the mechanisms by which vibratory force accelerates orthodontic tooth movement.


Assuntos
Osteogênese , Ligante RANK , Animais , Diferenciação Celular/genética , Camundongos , Osteoclastos , Osteogênese/fisiologia , Ligante RANK/metabolismo , Células RAW 264.7 , Estresse Mecânico , Fosfatase Ácida Resistente a Tartarato/metabolismo , Vibração
5.
J Oral Biol Craniofac Res ; 12(2): 253-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313655

RESUMO

Objectives: Resveratrol and oxyresveratrol, a resveratrol derivative, possess various pharmacological activities, including anti-cancer activities. Because cancer stem cells play an important role in cancer recurrence, the aims of this study were to investigate whether resveratrol or oxyresveratrol can inhibit the expression of cancer stem cell markers under hypoxia. Materials and methods: Deferoxamine was used to mimic the hypoxic condition. The mRNA expression of cancer stem cell markers was analyzed by Real-time PCR. Flow cytometry was used to determine the number of CD-44 + and CD-105 + cells. Results: Deferoxamine dose-dependently induced the expression of cancer stem cell markers; Oct-4, Nanog, CD-44, CD-105, and CD-133. The induction of these cancer stem cells markers was inhibited when the cells were treated with either resveratrol or oxyresveratrol. Moreover, we found that resveratrol also reduced the number of CD-44 + and CD-105 + cells after deferoxamine treatment. Conclusions: Resveratrol and oxyresveratrol inhibit the expression of cancer stem cell markers and might target cancer stem cells in a hypoxia-associated tumor.

6.
J Periodontol ; 93(2): e13-e23, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453745

RESUMO

BACKGROUND: Recently we have generated recombinant human osteopontin (rhOPN) using a plant platform (Nicotiana benthamiana) and demonstrated, when coated on culture plates, its osteogenic induction capacity of human periodontal ligament (PDL) cells. The aim of this study is to elucidate the molecular mechanism underlying the rhOPN-induced osteogenic differentiation of human PDL cells. METHODS: Full length rhOPN (FL-OPN) and three constructs of OPN containing integrin binding domain (N142), calcium binding domain (C122) and mutated calcium-binding domain (C122δ) were generated from N. benthamiana. Human PDL cells were isolated from extracted third molars and cultured on FL-OPN, N142, C122, or C122δ-coated surfaces. Real-time PCR and Western blot analyses were used to determine mRNA and protein expression. In vitro calcification was determined by Alizarin red staining. A chemical inhibitor and RNAi silencing were used to elucidate signaling pathways. In silico analyses were performed to predict the protein-protein interaction. In vivo analysis was performed using a rat calvaria defect model. RESULTS: Human PDL cells seeded on FL-OPN and C122-coated surfaces significantly increased both mRNA and protein expression of osterix (OSX) and enhanced in vitro calcification. Soluble FL-OPN as well as a surface coated with N142 did not affect OSX expression. Inhibition of activin receptor-like kinase (ALK-1) abolished the induction of osterix expression. In silico analysis suggested a possible interaction between the calcium binding domain (CaBD) of OPN and ALK-1 receptor. C122, but not C122δ coated surfaces, induced the expression of p-Smad-1 and this induction was inhibited by an ALK-1 inhibitor and RNAi against ALK-1. In vivo data showed that 3D porous scaffold containing C-122 enhanced new bone formation as compared to scaffold alone. CONCLUSION: The results suggest that next to full length OPN, the CaBD of OPN, if coated to a surface, induces osteogenic differentiation via interaction with ALK-1 receptor.


Assuntos
Osteogênese , Ligamento Periodontal , Animais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Osteopontina/metabolismo , Osteopontina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores Proteína Tirosina Quinases/metabolismo
7.
J Vis Exp ; (175)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34633368

RESUMO

As of 2000, the success of pancreatic islet transplantation using the Edmonton protocol to treat type I diabetes mellitus still faced some obstacles. These include the limited number of cadaveric pancreas donors and the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) have been considered to be a potential candidate as an alternative source of islet-like cell generation. Our previous reports have successfully illustrated the establishment of induction protocols for differentiating human dental pulp stem cells (hDPSCs) to insulin-producing cells (IPCs). However, the induction efficiency varied greatly. In this paper, we demonstrate the comparison of hDPSCs pancreatic induction efficiency via integrative (microenvironmental and genetic manipulation) and non-integrative (microenvironmental manipulation) induction protocols for delivering hDPSC-derived IPCs (hDPSC-IPCs). The results suggest distinct induction efficiency for both the induction approaches in terms of 3-dimensional colony structure, yield, pancreatic mRNA markers, and functional property upon multi-dosage glucose challenge. These findings will support the future establishment of a clinically applicable IPCs and pancreatic lineage production platform.


Assuntos
Células Secretoras de Insulina , Células-Tronco Mesenquimais , Diferenciação Celular , Polpa Dentária , Humanos , Pâncreas
8.
Front Plant Sci ; 12: 683417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249053

RESUMO

Denosumab, an anti-receptor activator of nuclear factor-kappa B ligand antibody (anti-RANKL), is a fully human monoclonal antibody (mAb) available for the treatment of osteoporosis. In the present study, an anti-RANKL mAb was transiently expressed using the geminiviral expression system in Nicotiana benthamiana, and the functional activity of the plant-produced mAb was determined. The highest expression level of the plant-produced mAb was found at 8 days post-infiltration, and it was estimated to be 0.5 mg/g leaf fresh weight. The recombinant mAb from the plant crude extracts was purified by using Protein A affinity column chromatography. The plant-produced mAb demonstrated good in vitro affinity binding with human RANKL, as determined by RANKL-ELISA binding. The function of the plant-produced mAb was evaluated in vitro. CD14-positive cells isolated from human peripheral blood mononuclear cells (PBMCs) were cultured in vitro in the presence of human RANKL and macrophage-colony-stimulating factor (M-CSF) to stimulate osteoclastogenesis. The results demonstrated that plant-produced mAb could significantly decrease the number of osteoclasts compared to commercial denosumab. These results demonstrated that the plant-produced mAb has the potential to inhibit osteoclast differentiation and that it could be considered for osteoporosis treatment.

9.
Sci Rep ; 11(1): 12409, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117315

RESUMO

The trend of regenerative therapy for diabetes in human and veterinary practices has conceptually been proven according to the Edmonton protocol and animal models. Establishing an alternative insulin-producing cell (IPC) resource for further clinical application is a challenging task. This study investigated IPC generation from two practical canine mesenchymal stem cells (cMSCs), canine bone marrow-derived MSCs (cBM-MSCs) and canine adipose-derived MSCs (cAD-MSCs). The results illustrated that cBM-MSCs and cAD-MSCs contain distinct pancreatic differentiation potential and require the tailor-made induction protocols. The effective generation of cBM-MSC-derived IPCs needs the integration of genetic and microenvironment manipulation using a hanging-drop culture of PDX1-transfected cBM-MSCs under a three-step pancreatic induction protocol. However, this protocol is resource- and time-consuming. Another study on cAD-MSC-derived IPC generation found that IPC colonies could be obtained by a low attachment culture under the three-step induction protocol. Further, Notch signaling inhibition during pancreatic endoderm/progenitor induction yielded IPC colonies through the trend of glucose-responsive C-peptide secretion. Thus, this study showed that IPCs could be obtained from cBM-MSCs and cAD-MSCs through different induction techniques. Also, further signaling manipulation studies should be conducted to maximize the protocol's efficiency.


Assuntos
Tecido Adiposo/metabolismo , Células da Medula Óssea/metabolismo , Insulina/biossíntese , Células-Tronco Mesenquimais/citologia , Animais , Adesão Celular , Técnicas de Cultura de Células , Células Cultivadas , Cães , Células-Tronco Mesenquimais/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Mater Sci Eng C Mater Biol Appl ; 120: 111783, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545910

RESUMO

Natural polymeric nanofibers-based materials for medical application is an intensive research area due to the unique features of natural polymeric nanofibers. Bacterial nanocellulose (BC) films containing various concentrations of mangosteen (Garcinia mangostana) peel extract were prepared and evaluated as a multifunctional nanofiber film. The extract was absorbed into BC hydrogel and air dried to entrap the extract into nanofiber network. The resulting films contained about 3, 35, and 294 mg of total phenolic compounds and 2, 24, and 250 mg of α-mangostin per cm3 of the dried films. The film containing the highest phenolic compounds and α-mangostin performed the inhibitory effect to Staphylococcus epidermidis, Propionibacterium acnes, and Staphylococcus aureus. High anticancer activity against B16F10 melanoma and MCF-7 breast cancer cells having viabilities of 10 and 5%, respectively after 48 h were detected after the treatments with the film. However, the film had a low toxicity against normal fibroblast and keratinocyte cells with 41 and 99% viability, respectively. The research suggested that the prepared films were a multifunctional nanofiber films with antimicrobial and anticancer properties.


Assuntos
Anti-Infecciosos , Garcinia mangostana , Nanofibras , Xantonas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Extratos Vegetais/farmacologia , Xantonas/farmacologia
11.
Sci Rep ; 10(1): 20703, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244029

RESUMO

Utilization of canine mesenchymal stem cells (cMSCs) for regenerating incorrigible bone diseases has been introduced. However, cMSCs harvested from different sources showed distinct osteogenicity. To clarify this, comparative proteomics-based systems biology analysis was used to analyze osteogenic differentiation behavior by cMSCs harvested from bone marrow and dental pulp. The results illustrated that canine dental pulp stem cells (cDPSCs) contained superior osteogenicity comparing with canine bone marrow-derived MSCs (cBM-MSCs) regarding alkaline phosphatase activity, matrix mineralization, and osteogenic marker expression. Global analyses by proteomics platform showed distinct protein clustering and expression pattern upon an in vitro osteogenic induction between them. Database annotation using Reactome and DAVID revealed contrast and unique expression profile of osteogenesis-related proteins, particularly on signaling pathways, cellular components and processes, and cellular metabolisms. Functional assay and hierarchical clustering for tracking protein dynamic change confirmed that cBM-MSCs required the presences of Wnt, transforming growth factor (TGF)-beta, and bone-morphogenetic protein (BMP) signaling, while cDPSCs mainly relied on BMP signaling presentation during osteogenic differentiation in vitro. Therefore, these findings illustrated the comprehensive data regarding an in vitro osteogenic differentiation behavior by cBM-MSCs and cDPSCs which is crucial for further mechanism study and the establishment of cMSC-based bone tissue engineering (BTE) for veterinary practice.


Assuntos
Medula Óssea/fisiologia , Diferenciação Celular/fisiologia , Polpa Dentária/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Animais , Células da Medula Óssea/fisiologia , Células Cultivadas , Cães , Biologia de Sistemas/métodos , Engenharia Tecidual/métodos
12.
J Biol Eng ; 14: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32855655

RESUMO

BACKGROUND: Current approach for diabetes treatment remained several adverse events varied from gastrointestinal to life-threatening symptoms. Regenerative therapy regarding Edmonton protocol has been facing serious limitations involving protocol efficiency and safety. This led to the study for alternative insulin-producing cell (IPC) resource and transplantation platform. In this study, evaluation of encapsulated human dental pulp-derived stem cell (hDPSC)-derived IPCs by alginate (ALG) and pluronic F127-coated alginate (ALGPA) was performed. RESULTS: The results showed that ALG and ALGPA preserved hDPSC viability and allowed glucose and insulin diffusion in and out. ALG and ALGPA-encapsulated hDPSC-derived IPCs maintained viability for at least 336 h and sustained pancreatic endoderm marker (NGN3), pancreatic islet markers (NKX6.1, MAF-A, ISL-1, GLUT-2 and INSULIN), and intracellular pro-insulin and insulin expressions for at least 14 days. Functional analysis revealed a glucose-responsive C-peptide secretion of ALG- and ALGPA-encapsulated hDPSC-derived IPCs at 14 days post-encapsulation. CONCLUSION: ALG and ALGPA encapsulations efficiently preserved the viability and functionality of hDPSC-derived IPCs in vitro and could be the potential transplantation platform for further clinical application.

13.
Stem Cells Int ; 2020: 7082679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508932

RESUMO

Microspace culture is promising for self-organization of induced pluripotent stem cells (iPSCs). However, the optimal size of microspaces for osteogenic differentiation is unclear. We hypothesized that a specific microspace size could facilitate self-organizing iPSC differentiation to form bone-like tissue in vitro. The objectives of this study were to investigate such effects of microspace size and to evaluate bone regeneration upon transplantation of the resulting osteogenic constructs. Dissociated mouse gingival fibroblast-derived iPSCs were plated in ultra-low-attachment microspace culture wells containing hundreds of U-bottom-shaped microwell spots per well to form cell aggregates in growth medium. The microwells had different aperture diameters/depths (400/560 µm (Elp400), 500/700 µm (Elp500), and 900/700 µm (Elp900)) (Kuraray; Elplasia). After 5 days of aggregation, cells were maintained in osteogenic induction medium for 35 days. Only cells in the Elp500 condition tightly aggregated and maintained high viability during osteogenic induction. After 10 days of induction, Elp500 cell constructs showed significantly higher gene expression of Runx2, Osterix, Collagen 1a1, Osteocalcin, Bone sialoprotein, and Osteopontin compared to constructs in Elp400 and Elp900. In methylene blue-counterstained von Kossa staining and Movat's pentachrome staining, only Elp500 constructs showed robust osteoid formation on day 35, with high expression of type I collagen (a major osteoid component) and osteocalcin proteins. Cell constructs were transplanted into rat calvarial bone defects, and micro-CT analysis after 3 weeks showed better bone repair with significantly higher bone mineral density in the Elp500 group compared to the Elp900 group. These results suggest that microspace size affects self-organized osteogenic differentiation of iPSCs. Elp500 microspace culture specifically induces mouse iPSCs into osteoid-rich bone-like tissue possessing high bone regeneration capacity.

14.
Cell Biol Int ; 44(2): 661-670, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769560

RESUMO

We previously reported that mechanical vibration-induced proinflammatory cytokines, interleukin-6 (IL-6) and IL-8, expression in human periodontal ligament (hPDL) cells, however, the underlying mechanism remained unclear. Mechanical stimuli are able to activate cellular responses by inducing the activation of several signaling pathways including cytoskeletal changes and inflammation. The actin cytoskeleton is a highly dynamic network and plays many important roles in intracellular events. Here, we aimed to investigate the involvement of a pivotal mediator of inflammatory responses, nuclear factor-κB (NF-κB), and actin polymerization in vibration-induced upregulation of IL-6 and IL-8 expression in hPDL cells. hPDL cells were pretreated with the NF-κB inhibitor BAY 11-7082 or cytochalasin D, respectively, before exposure to vibration. IL-6 and IL-8 messenger RNA (mRNA) and protein expression were quantified by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. Subcellular localization of the NF-κB p65 subunit was visualized by immunofluorescent staining. We found an increase in NF-κB nuclear translocation in vibrated cells compared with control cells. Pretreatment with BAY 11-7082 significantly inhibited vibration-induced IL-6 and IL-8 mRNA and protein expression in hPDL cells. Moreover, pretreatment with cytochalasin D inhibited NF-κB nuclear translocation and attenuated upregulation of IL-6 and IL-8 mRNA and protein in vibrated cells. Therefore, modulation of actin cytoskeletal polymerization in response to vibration may activate the NF-κB signaling pathway and subsequently upregulate IL-6 and IL-8 expression in hPDL cells.


Assuntos
Actinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Ligamento Periodontal/metabolismo , Vibração , Actinas/genética , Adolescente , Adulto , Células Cultivadas , Humanos , Interleucina-6/genética , Interleucina-8/genética , NF-kappa B/genética , Ligamento Periodontal/citologia , Transdução de Sinais , Adulto Jovem
15.
Plants (Basel) ; 8(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816999

RESUMO

Inductive molecules are critical components for successful bone tissue engineering. Dentin matrix protein-1 (DMP1), a non-collagenous protein in the bone matrix, has been shown to play roles in osteogenic differentiation and phosphate homeostasis. This study aimed to produce recombinant human dentin matrix protein-1 (hDMP1) in Nicotiana benthamiana and investigated the ability of this plant-produced DMP1 to induce osteogenesis in human periodontal ligament stem cells (hPDLSCs). The hDMP1 gene was cloned into the geminiviral vector for transient expression in N. benthamiana. We found that hDMP1 was transiently expressed in N. benthamiana leaves and could be purified by ammonium sulphate precipitation followed by nickel affinity chromatography. The effects of hDMP1 on the induction of cell proliferation and osteogenic differentiation were investigated. The results indicated that plant-produced hDMP1 could induce the cell proliferation of hPDLSCs and increase the expression levels of osteogenic genes, including osterix (OSX), type I collagen (COL1), bone morphogenetic protein-2 (BMP2), and Wnt3a. Moreover, the plant-produced hDMP1 promoted calcium deposition in hPDLSCs as determined by alizarin red S staining. In conclusion, our results indicated that plant-produced hDMP1 could induce osteogenic differentiation in hPDLSCs and could potentially be used as a bone inducer in bone tissue engineering.

16.
Cell Death Dis ; 10(10): 761, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591384

RESUMO

Mechanical force regulates periodontal ligament cell (PDL) behavior. However, different force types lead to distinct PDL responses. Here, we report that pretreatment with an intermittent compressive force (ICF), but not a continuous compressive force (CCF), promoted human PDL (hPDL) osteogenic differentiation as determined by osteogenic marker gene expression and mineral deposition in vitro. ICF-induced osterix (OSX) expression was inhibited by cycloheximide and monensin. Although CCF and ICF significantly increased extracellular adenosine triphosphate (ATP) levels, pretreatment with exogenous ATP did not affect hPDL osteogenic differentiation. Gene-expression profiling of hPDLs subjected to CCF or ICF revealed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and transforming growth factor beta (TGF-ß) signaling pathway genes were commonly upregulated, while calcium signaling pathway genes were downregulated in both CCF- and ICF-treated hPDLs. The TGFB1 mRNA level was significantly increased, while those of TGFB2 and TGFB3 were decreased by ICF treatment. In contrast, CCF did not modify TGFB1 expression. Inhibiting TGF-ß receptor type I or adding a TGF-ß1 neutralizing antibody attenuated the ICF-induced OSX expression. Exogenous TGF-ß1 pretreatment promoted hPDL osteogenic marker gene expression and mineral deposition. Additionally, pretreatment with ICF in the presence of TGF-ß receptor type I inhibitor attenuated the ICF-induced mineralization. In conclusion, this study reveals the effects of ICF on osteogenic differentiation in hPDLs and implicates TGF-ß signaling as one of its regulatory mechanisms.


Assuntos
Diferenciação Celular/genética , Fenômenos Mecânicos , Osteogênese/genética , Ligamento Periodontal/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Minerais/metabolismo , Ligamento Periodontal/metabolismo , Transdução de Sinais/genética , Fator de Transcrição Sp7/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética
17.
Arch Oral Biol ; 107: 104495, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31377584

RESUMO

OBJECTIVE: Cyclic tensile force (CTF) modulates physiological responses of periodontal ligament (PDL) cells. PDL cells are mechanosensitive and are able to maintain tissue homeostasis; a process mediated by the expression of particular cytokines including interleukin 6 (IL6). It is unknown whether CTF-induced IL6 regulates the expression of MMPs, enzymes needed for tissue remodeling. DESIGN: Human PDL cells were subjected to 10% elongation strain of CTF at a frequency of 60 rpm continuously for 6 h. RNA and proteins were extracted and analyzed for IL6 and MMP expression by quantitative real-time PCR and ELISA, respectively. Using a neutralizing anti-IL6 antibody and addition of recombinant human IL6 at concentrations of 0.1, 1, 10 ng.mL-1 were performed to clarify whether CTF-upregulated IL6 increased MMP expression. Inhibitors of intracellular signaling molecules were employed to reveal possible pathway(s) of IL6-induced MMP expression. RESULTS: CTF-induced IL6 expression coincided with an increased MMP3 expression. A neutralizing anti-IL6 antibody attenuated the CTF-increased MMP3 expression, whereas stimulating the cells with recombinant human IL6 increased MMP3 expression. Both PI3K and MAPK pathways were essential in the IL6 induced expression of MMP3. CONCLUSION: Our findings suggest a role of CTF in the modulation of expression of IL6 and MMP3 and thus in the regulation of homeostasis and remodeling of the periodontal ligament.


Assuntos
Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Ligamento Periodontal/citologia , Estresse Mecânico , Células Cultivadas , Humanos , Transdução de Sinais , Regulação para Cima
18.
Biotechnol Rep (Amst) ; 21: e00312, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30847284

RESUMO

Osteopontin (OPN) plays an important role in the bone regeneration process. Previous investigation showed that recombinant human OPN was able to express in Nicotiana benthamiana leaves and induced the osteogenic related genes. Nevertheless, the purification of OPN from plant proteins with Ni affinity chromatography was still not effective enough. To improve the quality of protein expression and purification in plants, we constructed an Fc-based form of OPN. The complete OPN protein was fused to the human IgG1 Fc domain. Here, we showed that the plant-produced OPN-Fc increases the protein expression level and facilitates the purification of the recombinant protein. Our result showed that the plant-produced OPN-Fc can stimulate the expression of osteogenic related genes such as DMP1, OSX, and Wnt3a and also the calcium deposition in hPDL cells. These findings suggest that the plant-produced OPN-Fc has potential application in tissue engineering in the future.

19.
Arch Oral Biol ; 99: 134-140, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30682716

RESUMO

OBJECTIVES: The present study aimed to investigate the expression of Notch signaling components during osteogenic differentiation in vitro and bone healing in vivo. In addition, the influence of Notch signaling on osteogenic differentiation of human bone-derived cells was examined. METHODS: Gene expression profiling of osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells in vitro (GSE80614) and bone healing period of murine tibial fracture in vivo (GSE99388) was downloaded from Gene Expression Omnibus database. The expression of Notch signaling components was obtained from bioinformatic tools. Human bone-derived cells were isolated from alveolar and iliac bone. Cells were seeded on Jagged1 immobilized surface. Osteogenic marker gene expression and mineralization were examined using real-time polymerase chain reaction and alizarin red s staining, respectively. RESULTS: From bioinformatic analysis of gene expression profiling, various Notch signaling components were differentially expressed during osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells in vitro and bone healing period of murine tibial fracture in vivo. The common genes differentially regulated of these two datasets were Hes1, Aph1a, Nsctn, Furin, Adam17, Hey1, Pcsk5, Nedd4, Jag1, Heyl, Notch3, Dlk1, and Hey2. For an in vitro analysis, the mineral deposition markedly increased after seeding human bone-derived cells on Jagged1 immobilized surface, correspondingly with the increase of ALP mRNA expression. Jagged1 treatment downregulated TWIST2 mRNA expression in both human alveolar and iliac bone-derived cells. CONCLUSION: Notch signaling is regulated during osteogenic differentiation and bone healing. In addition, the activation of Notch signaling promotes osteogenic differentiation in human alveolar and iliac bone-derived cells. Therefore, Notch signaling manipulation could be a useful approach for enhancing bone regeneration.


Assuntos
Calcificação Fisiológica/fisiologia , Proteína Jagged-1/metabolismo , Osteócitos/metabolismo , Osteogênese/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Proteína ADAM17/genética , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Endopeptidases/genética , Furina/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ílio/efeitos dos fármacos , Ílio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1/genética , Proteína Jagged-1/farmacologia , Proteínas de Membrana , Células-Tronco Mesenquimais , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Osteócitos/efeitos dos fármacos , Osteogênese/genética , Pró-Proteína Convertase 5 , RNA Mensageiro , Receptor Notch3/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Fraturas da Tíbia/genética , Fraturas da Tíbia/metabolismo , Fatores de Transcrição HES-1/genética
20.
J Cell Physiol ; 234(4): 4528-4539, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30206934

RESUMO

Periodontal ligament (PDL) cells are mechanosensitive and have the potential to differentiate into osteoblast-like cells under the influence of cyclic tensile force (CTF). CTF modulates the expression of regulatory proteins including bone morphogenetic proteins (BMPs), which are essential for the homeostasis of the periodontium. Among the BMPs, BMP9 is one of the most potent osteogenic BMPs. It is yet unknown whether CTF affects the expression of BMP9 and mineralization. Here, we demonstrated that continuously applied CTF for only the first 6 hr stimulated the synthesis of BMP9 and induced mineral deposition within 14 days by human PDL cells. Stimulation of BMP9 expression depended on ATP and P2Y 1 receptors. Apyrase, an ecto-ATPase, inhibited CTF-mediated ATP-induced BMP9 expression. The addition of ATP increased the expression of BMP9. Loss of function experiments using suramin (a broad-spectrum P2Y antagonist), MRS2179 (a specific P2Y 1 receptor antagonist), MRS 2365 (a specific P2Y 1 agonist), U-73122 (a phospholipase C [PLC] inhibitor), and thapsigargin (enhancer of intracytosolic calcium) revealed the participation of P2Y 1 in regulating the expression of BMP9. This was mediated by an increased level of intracellular Ca 2+ through the PLC pathway. A neutralizing anti-BMP9 antibody decreased mineral deposition, which was stimulated by CTF for almost 45% indicating a role of BMP9 in an in vitro mineralization. Collectively, our findings suggest an essential modulatory role of CTF in the homeostasis and regeneration of the periodontium.


Assuntos
Calcificação Fisiológica , Fator 2 de Diferenciação de Crescimento/biossíntese , Mecanotransdução Celular , Ligamento Periodontal/metabolismo , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Fator 2 de Diferenciação de Crescimento/genética , Homeostase , Humanos , Ligamento Periodontal/citologia , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Estresse Mecânico , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA