Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076389

RESUMO

DNA double-strand breaks (DSBs) can lead to mutations, chromosomal rearrangements, genome instability, and cancer. Central to the sensing of DSBs is the ATM (Ataxia-telangiectasia mutated) kinase, which belongs to the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family. In response to DSBs, ATM is activated by the MRN (Mre11-Rad50-Nbs1) protein complex through a poorly understood process that also requires double-stranded DNA. Previous studies indicate that the FxF/Y motif of Nbs1 directly binds to ATM, and is required to retain active ATM at sites of DNA damage. Here, we report the 2.5 Å resolution cryo-EM structures of human ATM and its complex with the Nbs1 FxF/Y motif. In keeping with previous structures of ATM and its yeast homolog Tel1, the dimeric human ATM kinase adopts a symmetric, butterfly-shaped structure. The conformation of the ATM kinase domain is most similar to the inactive states of other PIKKs, suggesting that activation may involve an analogous realigning of the N and C lobes along with relieving the blockage of the substrate-binding site. We also show that the Nbs1 FxF/Y motif binds to a conserved hydrophobic cleft within the Spiral domain of ATM, suggesting an allosteric mechanism of activation. We evaluate the importance of these structural findings with mutagenesis and biochemical assays.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Células HEK293 , Humanos , Mutação/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Ligação Proteica
2.
Nature ; 580(7802): 278-282, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269332

RESUMO

The ID complex, involving the proteins FANCI and FANCD2, is required for the repair of DNA interstrand crosslinks (ICL) and related lesions1. These proteins are mutated in Fanconi anaemia, a disease in which patients are predisposed to cancer. The Fanconi anaemia pathway of ICL repair is activated when a replication fork stalls at an ICL2; this triggers monoubiquitination of the ID complex, in which one ubiquitin molecule is conjugated to each of FANCI and FANCD2. Monoubiquitination of ID is essential for ICL repair by excision, translesion synthesis and homologous recombination; however, its function remains unknown1,3. Here we report a cryo-electron microscopy structure of the monoubiquitinated human ID complex bound to DNA, and reveal that it forms a closed ring that encircles the DNA. By comparison with the structure of the non-ubiquitinated ID complex bound to ICL DNA-which we also report here-we show that monoubiquitination triggers a complete rearrangement of the open, trough-like ID structure through the ubiquitin of one protomer binding to the other protomer in a reciprocal fashion. These structures-together with biochemical data-indicate that the monoubiquitinated ID complex loses its preference for ICL and related branched DNA structures, and becomes a sliding DNA clamp that can coordinate the subsequent repair reactions. Our findings also reveal how monoubiquitination in general can induce an alternative protein structure with a new function.


Assuntos
Microscopia Crioeletrônica , DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , DNA/química , Anemia de Fanconi/genética , Humanos , Modelos Moleculares , Conformação Proteica , Ubiquitina/química
3.
Cell Rep ; 29(1): 62-75.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577956

RESUMO

Id helix-loop-helix (HLH) proteins (Id1-4) bind E protein bHLH transcription factors, preventing them from forming active transcription complexes that drive changes in cell states. Id proteins are primarily expressed during development to inhibit differentiation, but they become re-expressed in adult tissues in diseases of the vasculature and cancer. We show that the genetic loss of Id1/Id3 reduces ocular neovascularization in mouse models of wet age-related macular degeneration (AMD) and retinopathy of prematurity (ROP). An in silico screen identifies AGX51, a small-molecule Id antagonist. AGX51 inhibits the Id1-E47 interaction, leading to ubiquitin-mediated degradation of Ids, cell growth arrest, and reduced viability. AGX51 is well-tolerated in mice and phenocopies the genetic loss of Id expression in AMD and ROP models by inhibiting retinal neovascularization. Thus, AGX51 is a first-in-class compound that antagonizes an interaction formerly considered undruggable and that may have utility in the management of multiple diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/metabolismo
4.
Nature ; 552(7685): 368-373, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29236692

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Microscopia Crioeletrônica , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/ultraestrutura , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Modelos Moleculares , Mutação , Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/química , Proteína Enriquecida em Homólogo de Ras do Encéfalo/ultraestrutura , Proteína Regulatória Associada a mTOR/química , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Sirolimo/metabolismo , Especificidade por Substrato , Proteína 1A de Ligação a Tacrolimo/metabolismo
5.
J Biomol Tech ; 27(2): 61-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27006647

RESUMO

In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.


Assuntos
Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Cavalos , Mioglobina/química , Análise de Sequência de Proteína/normas , Coloração e Rotulagem , Espectrometria de Massas em Tandem
7.
Science ; 346(6213): 1127-30, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430771

RESUMO

DNA interstrand cross-links (ICLs) are highly toxic lesions associated with cancer and degenerative diseases. ICLs can be repaired by the Fanconi anemia (FA) pathway and through FA-independent processes involving the FAN1 nuclease. In this work, FAN1-DNA crystal structures and biochemical data reveal that human FAN1 cleaves DNA successively at every third nucleotide. In vitro, this exonuclease mechanism allows FAN1 to excise an ICL from one strand through flanking incisions. DNA access requires a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap, suggesting that FAN1 action is coupled to DNA synthesis or recombination. FAN1's mechanism of ICL excision is well suited for processing other localized DNA adducts as well.


Assuntos
Adutos de DNA/química , Reparo do DNA , DNA/química , Exodesoxirribonucleases/química , DNA/biossíntese , DNA/genética , Adutos de DNA/genética , Replicação do DNA , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Humanos , Enzimas Multifuncionais , Conformação de Ácido Nucleico , Conformação Proteica , Recombinação Genética
8.
Nature ; 497(7448): 217-23, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23636326

RESUMO

The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase-related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a complex of truncated mTOR and mammalian lethal with SEC13 protein 8 (mLST8) with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and a catalytic mechanism remarkably similar to canonical protein kinases. The active site is highly recessed owing to the FKBP12-rapamycin-binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR-activating mutations map to the structural framework that holds these elements in place, indicating that the kinase is controlled by restricted access. In vitro biochemistry shows that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. Rapamycin-FKBP12 inhibits the kinase by directly blocking substrate recruitment and by further restricting active-site access. The structures also reveal active-site residues and conformational changes that underlie inhibitor potency and specificity.


Assuntos
Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Furanos/química , Furanos/farmacologia , Humanos , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Naftiridinas/química , Naftiridinas/metabolismo , Naftiridinas/farmacologia , Estrutura Terciária de Proteína/efeitos dos fármacos , Purinas/química , Purinas/metabolismo , Purinas/farmacologia , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sirolimo/química , Sirolimo/metabolismo , Sirolimo/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/farmacologia , Homólogo LST8 da Proteína Associada a mTOR
9.
Science ; 333(6040): 312-6, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764741

RESUMO

Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the ~300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.


Assuntos
Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Ubiquitina/química , Ubiquitinação
10.
Mol Cell ; 35(6): 818-29, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19782031

RESUMO

The CHK2 protein kinase is an important transducer of DNA damage checkpoint signals, and its mutation contributes to hereditary and sporadic cancer. CHK2 activation is triggered by the phosphorylation of Thr68 by the DNA damage-activated ATM kinase. This leads to transient CHK2 dimerization, in part through intermolecular phosphoThr68-FHA domain interactions. Dimerization promotes kinase activation through activation-loop autophosphorylation, but the mechanism of this process has not been clear. The dimeric crystal structure of CHK2, described here, in conjunction with biochemical and mutational data reveals that productive CHK2 dimerization additionally involves intermolecular FHA-kinase domain and FHA-FHA interactions. Ile157, mutated in the Li-Fraumeni cancer-predisposition syndrome, plays a central role in the FHA-kinase domain interface, explaining the lack of dimerization and autophosphorylation of this mutant. In the dimer, the kinase active sites face each other in close proximity, indicating that dimerization may also serve to optimally position the kinase active sites for efficient activation loop transphosphorylation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Isoleucina , Síndrome de Li-Fraumeni/enzimologia , Síndrome de Li-Fraumeni/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Conformação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Treonina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
11.
Cell ; 135(7): 1213-23, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109893

RESUMO

Ultraviolet (UV) light-induced pyrimidine photodimers are repaired by the nucleotide excision repair pathway. Photolesions have biophysical parameters closely resembling undamaged DNA, impeding discovery through damage surveillance proteins. The DDB1-DDB2 complex serves in the initial detection of UV lesions in vivo. Here we present the structures of the DDB1-DDB2 complex alone and bound to DNA containing either a 6-4 pyrimidine-pyrimidone photodimer (6-4PP) lesion or an abasic site. The structure shows that the lesion is held exclusively by the WD40 domain of DDB2. A DDB2 hairpin inserts into the minor groove, extrudes the photodimer into a binding pocket, and kinks the duplex by approximately 40 degrees. The tightly localized probing of the photolesions, combined with proofreading in the photodimer pocket, enables DDB2 to detect lesions refractory to detection by other damage surveillance proteins. The structure provides insights into damage recognition in chromatin and suggests a mechanism by which the DDB1-associated CUL4 ubiquitin ligase targets proteins surrounding the site of damage.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Raios Ultravioleta , Animais , Dano ao DNA , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
12.
Nature ; 453(7194): 489-4, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18497818

RESUMO

The RecA family of ATPases mediates homologous recombination, a reaction essential for maintaining genomic integrity and for generating genetic diversity. RecA, ATP and single-stranded DNA (ssDNA) form a helical filament that binds to double-stranded DNA (dsDNA), searches for homology, and then catalyses the exchange of the complementary strand, producing a new heteroduplex. Here we have solved the crystal structures of the Escherichia coli RecA-ssDNA and RecA-heteroduplex filaments. They show that ssDNA and ATP bind to RecA-RecA interfaces cooperatively, explaining the ATP dependency of DNA binding. The ATP gamma-phosphate is sensed across the RecA-RecA interface by two lysine residues that also stimulate ATP hydrolysis, providing a mechanism for DNA release. The DNA is underwound and stretched globally, but locally it adopts a B-DNA-like conformation that restricts the homology search to Watson-Crick-type base pairing. The complementary strand interacts primarily through base pairing, making heteroduplex formation strictly dependent on complementarity. The underwound, stretched filament conformation probably evolved to destabilize the donor duplex, freeing the complementary strand for homology sampling.


Assuntos
DNA/química , DNA/metabolismo , Escherichia coli/enzimologia , Recombinases Rec A/química , Recombinases Rec A/metabolismo , Recombinação Genética , Homologia de Sequência do Ácido Nucleico , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Conformação Proteica , Recombinação Genética/genética
13.
Nature ; 449(7162): 570-5, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17882165

RESUMO

Mutations in the nucleotide excision repair (NER) pathway can cause the xeroderma pigmentosum skin cancer predisposition syndrome. NER lesions are limited to one DNA strand, but otherwise they are chemically and structurally diverse, being caused by a wide variety of genotoxic chemicals and ultraviolet radiation. The xeroderma pigmentosum C (XPC) protein has a central role in initiating global-genome NER by recognizing the lesion and recruiting downstream factors. Here we present the crystal structure of the yeast XPC orthologue Rad4 bound to DNA containing a cyclobutane pyrimidine dimer (CPD) lesion. The structure shows that Rad4 inserts a beta-hairpin through the DNA duplex, causing the two damaged base pairs to flip out of the double helix. The expelled nucleotides of the undamaged strand are recognized by Rad4, whereas the two CPD-linked nucleotides become disordered. These findings indicate that the lesions recognized by Rad4/XPC thermodynamically destabilize the Watson-Crick double helix in a manner that facilitates the flipping-out of two base pairs.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sequência de Bases , Cristalografia por Raios X , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
14.
Mol Cell ; 26(1): 131-43, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17434132

RESUMO

The ubiquitin-mediated proteolysis of cyclin E plays a central role in cell-cycle progression, and cyclin E accumulation is a common event in cancer. Cyclin E degradation is triggered by multisite phosphorylation, which induces binding to the SCF(Fbw7) ubiquitin ligase complex. Structures of the Skp1-Fbw7 complex bound to cyclin E peptides identify a doubly phosphorylated pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly phosphorylated pThr62 motif as a low-affinity one. Biochemical data indicate that the closely related yeast SCF(Cdc4) complex recognizes the multisite phosphorylated Sic1 substrate similarly and identify three doubly phosphorylated Sic1 degrons, each capable of high-affinity interactions with two Cdc4 phosphate binding sites. A model that explains the role of multiple cyclin E/Sic1 degrons is provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7 dimerization enhances the turnover of a weakly associated cyclin E in vivo, and that Cdc4 dimerization increases the rate and processivity of Sic1 ubiquitination in vitro.


Assuntos
Proteínas de Ciclo Celular/química , Ciclina E/química , Proteínas F-Box/química , Proteínas Quinases Associadas a Fase S/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina , Dimerização , Proteínas F-Box/isolamento & purificação , Proteínas F-Box/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Quinases Associadas a Fase S/isolamento & purificação , Proteínas Quinases Associadas a Fase S/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina/metabolismo , Transfecção , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química
15.
Cell ; 128(1): 141-56, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17218261

RESUMO

The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias do Colo/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Glutamina/genética , Síndrome do Hamartoma Múltiplo/patologia , Humanos , Lisina/genética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ubiquitina-Proteína Ligases Nedd4 , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/química , Pólipos/patologia , Estrutura Secundária de Proteína , Transporte Proteico , Ubiquitina-Proteína Ligases/metabolismo
16.
EMBO J ; 26(1): 90-101, 2007 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17170710

RESUMO

Mdm2, a key negative regulator of the p53 tumor suppressor, is a RING-type E3 ubiquitin ligase. The Mdm2 RING domain can be biochemically fractionated into two discrete species, one of which exists as higher order oligomers that are visible by electron microscopy, whereas the other is a monomer. Both fractions are ATP binding and E3 ligase activity competent, although the oligomeric fraction exhibits lower dependence on the E2 component of ubiquitin polymerization reactions. The extreme C-terminal five amino acids of Mdm2 are essential for E3 ligase activity in vivo and in vitro, as well as for oligomeric assembly of the protein. A single residue (phenylalanine 490) in that sequence is critical for both properties. Interestingly, the C-terminus of the Mdm2 homologue, MdmX (itself inert as an E3 ligase), can fully substitute for the equivalent segment of Mdm2 and restore its E3 activity. We further show that the Mdm2 C-terminus is involved in intramolecular interactions and can set up a platform for direct protein-protein interactions with the E2.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/química , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Humanos , Microscopia Eletrônica , Modelos Biológicos , Proteínas Nucleares/química , Fenilalanina/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/química
17.
Cell ; 123(6): 1093-106, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16360038

RESUMO

The retinoblastoma (Rb) protein negatively regulates the G1-S transition by binding to the E2F transcription factors, until cyclin-dependent kinases phosphorylate Rb, causing E2F release. The Rb pocket domain is necessary for E2F binding, but the Rb C-terminal domain (RbC) is also required for growth suppression. Here we demonstrate a high-affinity interaction between RbC and E2F-DP heterodimers shared by all Rb and E2F family members. The crystal structure of an RbC-E2F1-DP1 complex reveals an intertwined heterodimer in which the marked box domains of both E2F1 and DP1 contact RbC. We also demonstrate that phosphorylation of RbC at serines 788 and 795 destabilizes one set of RbC-E2F-DP interactions directly, while phosphorylation at threonines 821 and 826 induces an intramolecular interaction between RbC and the Rb pocket that destabilizes the remaining interactions indirectly. Our findings explain the requirement of RbC for high-affinity E2F binding and growth suppression and establish a mechanism for the regulation of Rb-E2F association by phosphorylation.


Assuntos
Fator de Transcrição E2F1/metabolismo , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição DP1/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Fator de Transcrição E2F1/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Homologia de Sequência de Aminoácidos , Serina/metabolismo , Treonina/metabolismo , Fator de Transcrição DP1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Mol Cell ; 20(1): 9-19, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16209941

RESUMO

The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.


Assuntos
Quinases Ciclina-Dependentes/química , Complexos Multiproteicos/química , Proteínas Quinases Associadas a Fase S/química , Ubiquitina-Proteína Ligases/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X/métodos , Proteínas Culina/química , Proteínas Culina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Neoplasias/química , Neoplasias/metabolismo , Fosforilação , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Nature ; 433(7026): 653-7, 2005 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-15703751

RESUMO

The BRCA2 tumour suppressor is essential for the error-free repair of double-strand breaks (DSBs) in DNA by homologous recombination. This is mediated by RAD51, which forms a nucleoprotein filament with the 3' overhanging single-stranded DNA (ssDNA) of the resected DSB, searches for a homologous donor sequence, and catalyses strand exchange with the donor DNA. The 3,418-amino-acid BRCA2 contains eight approximately 30-amino-acid BRC repeats that bind RAD51 (refs 5, 6) and a approximately 700-amino-acid DBD domain that binds ssDNA. The isolated BRC and DBD domains have the opposing effects of inhibiting and stimulating recombination, respectively, and the role of BRCA2 in repair has been unclear. Here we show that a full-length BRCA2 homologue (Brh2) stimulates Rad51-mediated recombination at substoichiometric concentrations relative to Rad51. Brh2 recruits Rad51 to DNA and facilitates the nucleation of the filament, which is then elongated by the pool of free Rad51. Brh2 acts preferentially at a junction between double-stranded DNA (dsDNA) and ssDNA, with strict specificity for the 3' overhang polarity of a resected DSB. These results establish a BRCA2 function in RAD51-mediated DSB repair and explain the loss of this repair capacity in BRCA2-associated cancers.


Assuntos
Proteína BRCA2/metabolismo , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Ustilago/metabolismo , Adenosina Trifosfatases/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Bacteriófago phi X 174/genética , Troca Genética , DNA/química , Dano ao DNA , DNA de Cadeia Simples/química , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Conformação de Ácido Nucleico , Conformação Proteica , Rad51 Recombinase , Ustilago/genética
20.
Structure ; 12(7): 1237-43, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15242600

RESUMO

The DNA binding domains of human p53 and Cep-1, its C. elegans ortholog, recognize essentially identical DNA sequences despite poor sequence similarity. We solved the three-dimensional structure of the Cep-1 DNA binding domain in the absence of DNA and compared it to that of human p53. The two domains have similar overall folds. However, three loops, involved in DNA and Zn binding in human p53, contain small alpha helices in Cep-1. The alpha helix in loop L3 of Cep-1 orients the side chains of two conserved arginines toward DNA; in human p53, both arginines are mutation hotspots, but only one contacts DNA. The alpha helix in loop L1 of Cep-1 repositions the entire loop, making it unlikely for residues of this loop to contact bases in the major groove of DNA, as occurs in human p53. Thus, during evolution there have been considerable changes in the structure of the p53 DNA binding domain.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/metabolismo , Cristalização , Coleta de Dados , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA