Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683873

RESUMO

Antituberculosis drugs, mostly developed over 60 years ago, combined with a poorly effective vaccine, have failed to eradicate tuberculosis. More worryingly, multiresistant strains of Mycobacterium tuberculosis (MTB) are constantly emerging. Innovative strategies are thus urgently needed to improve tuberculosis treatment. Recently, host-directed therapy has emerged as a promising strategy to be used in adjunct with existing or future antibiotics, by improving innate immunity or limiting immunopathology. Here, using high-content imaging, we identified novel 1,2,4-oxadiazole-based compounds, which allow human macrophages to control MTB replication. Genome-wide gene expression analysis revealed that these molecules induced zinc remobilization inside cells, resulting in bacterial zinc intoxication. More importantly, we also demonstrated that, upon treatment with these novel compounds, MTB became even more sensitive to antituberculosis drugs, in vitro and in vivo, in a mouse model of tuberculosis. Manipulation of heavy metal homeostasis holds thus great promise to be exploited to develop host-directed therapeutic interventions.


Assuntos
Antituberculosos , Modelos Animais de Doenças , Macrófagos , Mycobacterium tuberculosis , Oxidiazóis , Tuberculose , Zinco , Animais , Oxidiazóis/farmacologia , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Zinco/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Tuberculose/tratamento farmacológico , Camundongos Endogâmicos C57BL , Feminino , Sinergismo Farmacológico
2.
Cell Rep ; 40(4): 111142, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905717

RESUMO

Lentiviral vectors (LVs) are highly efficient at inducing CD8+ T cell responses. However, LV-encoded antigens are processed inside the cytosol of antigen-presenting cells, which does not directly communicate with the endosomal major histocompatibility complex class II (MHC-II) presentation pathway. LVs are thus poor at inducing CD4+ T cell response. To overcome this limitation, we devised a strategy whereby LV-encoded antigens are extended at their N-terminal end with the MHC-II-associated light invariant chain (li), which contains an endosome-targeting signal sequence. When evaluated with an LV-encoded polyantigen composed of CD4+ T cell targets from Mycobacterium tuberculosis, intranasal vaccination in mice triggers pulmonary polyfunctional CD4+ and CD8+ T cell responses. Adjuvantation of these LVs extends the mucosal immunity to Th17 and Tc17 responses. A systemic prime and an intranasal boost with one of these LV induces protection against M. tuberculosis. This strategy improves the protective power of LVs against infections and cancers, where CD4+ T cell immunity plays an important role.


Assuntos
Antígenos de Histocompatibilidade Classe II , Mycobacterium tuberculosis , Animais , Antígenos de Bactérias , Antígenos de Diferenciação de Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vetores Genéticos , Lentivirus , Camundongos , Camundongos Endogâmicos C57BL , Mycobacteriaceae
3.
Nat Commun ; 11(1): 684, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019932

RESUMO

Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted "modern" lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact "ancestral" lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Animais , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Filogenia , Deleção de Sequência , Virulência
4.
PLoS Pathog ; 15(11): e1008069, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31703112

RESUMO

Free-living amoebae are thought to represent an environmental niche in which amoeba-resistant bacteria may evolve towards pathogenicity. To get more insights into factors playing a role for adaptation to intracellular life, we characterized the transcriptomic activities of the emerging pathogen Mycobacterium abscessus in amoeba and murine macrophages (Mϕ) and compared them with the intra-amoebal transcriptome of the closely related, but less pathogenic Mycobacterium chelonae. Data on up-regulated genes in amoeba point to proteins that allow M. abscessus to resist environmental stress and induce defense mechanisms, as well as showing a switch from carbohydrate carbon sources to fatty acid metabolism. For eleven of the most upregulated genes in amoeba and/or Mϕ, we generated individual gene knock-out M. abscessus mutant strains, from which ten were found to be attenuated in amoeba and/or Mϕ in subsequence virulence analyses. Moreover, transfer of two of these genes into the genome of M. chelonae increased the intra-Mϕ survival of the recombinant strain. One knock-out mutant that had the gene encoding Eis N-acetyl transferase protein (MAB_4532c) deleted, was particularly strongly attenuated in Mϕ. Taken together, M. abscessus intra-amoeba and intra-Mϕ transcriptomes revealed the capacity of M. abscessus to adapt to an intracellular lifestyle, with amoeba largely contributing to the enhancement of M. abscessus intra-Mϕ survival.


Assuntos
Amoeba/genética , Macrófagos/metabolismo , Infecções por Mycobacterium não Tuberculosas/genética , Mycobacterium abscessus/patogenicidade , Transcriptoma , Fatores de Virulência/genética , Virulência/genética , Amoeba/crescimento & desenvolvimento , Amoeba/microbiologia , Animais , Proteínas de Bactérias/genética , Macrófagos/microbiologia , Camundongos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/isolamento & purificação
5.
Front Microbiol ; 10: 905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114557

RESUMO

Mycobacterium abscessus, a pathogen responsible for severe lung infections in cystic fibrosis patients, exhibits either smooth (S) or rough (R) morphotypes. The S-to-R transition correlates with inhibition of the synthesis and/or transport of glycopeptidolipids (GPLs) and is associated with an increase of pathogenicity in animal and human hosts. Lsr2 is a small nucleoid-associated protein highly conserved in mycobacteria, including M. abscessus, and is a functional homolog of the heat-stable nucleoid-structuring protein (H-NS). It is essential in Mycobacterium tuberculosis but not in the non-pathogenic model organism Mycobacterium smegmatis. It acts as a master transcriptional regulator of multiple genes involved in virulence and immunogenicity through binding to AT-rich genomic regions. Previous transcriptomic studies, confirmed here by quantitative PCR, showed increased expression of lsr2 (MAB_0545) in R morphotypes when compared to their S counterparts, suggesting a possible role of this protein in the virulence of the R form. This was addressed by generating lsr2 knock-out mutants in both S (Δlsr2-S) and R (Δlsr2-R) variants, demonstrating that this gene is dispensable for M. abscessus growth. We show that the wild-type S variant, Δlsr2-S and Δlsr2-R strains were more sensitive to H2O2 as compared to the wild-type R variant of M. abscessus. Importantly, virulence of the Lsr2 mutants was considerably diminished in cellular models (macrophage and amoeba) as well as in infected animals (mouse and zebrafish). Collectively, these results emphasize the importance of Lsr2 in M. abscessus virulence.

6.
J Vis Exp ; (139)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30320743

RESUMO

What differentiates Mycobacterium abscessus from other saprophytic mycobacteria is the ability to resist phagocytosis by human macrophages and the ability to multiply inside such cells. These virulence traits render M. abscessus pathogenic, especially in vulnerable hosts with underlying structural lung disease, such as cystic fibrosis, bronchiectasis or tuberculosis. How patients become infected with M. abscessus remains unclear. Unlike many mycobacteria, M. abscessus is not found in the environment but might reside inside amoebae, environmental phagocytes that represent a potential reservoir for M. abscessus. Indeed, M. abscessus is resistant to amoebal phagocytosis and the intra-amoeba life seems to increase M. abscessus virulence in an experimental model of infection. However, little is known about M. abscessus virulence in itself. To decipher the genes conferring an advantage to M. abscessus intracellular life, a screening of a M. abscessus transposon mutant library was developed. In parallel, a method of RNA extraction from intracellular Mycobacteria after co-culture with amoebae was developed. This method was validated and allowed the sequencing of whole M. abscessus transcriptomes inside the cells; providing, for the first time, a global view on M. abscessus adaptation to intracellular life. Both approaches give us an insight into M. abscessus virulence factors that enable M. abscessus to colonize the airways in humans.


Assuntos
Eucariotos , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidade , Fagócitos/microbiologia , Humanos , Virulência , Fatores de Virulência/genética
7.
Mol Microbiol ; 101(3): 515-29, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27121350

RESUMO

The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid-growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol-based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1-binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.


Assuntos
Antituberculosos/farmacologia , Ácidos Micólicos/metabolismo , Micobactérias não Tuberculosas/efeitos dos fármacos , Piperidinas/farmacologia , Animais , Sítios de Ligação , Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/metabolismo , Peixe-Zebra
8.
Sci Rep ; 5: 16918, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603639

RESUMO

Mycobacterium tuberculosis, the agent of human tuberculosis has developed different virulence mechanisms and virulence-associated tools during its evolution to survive and multiply inside the host. Based on previous reports and by analogy with other bacteria, phospholipases C (PLC) of M. tuberculosis were thought to be among these tools. To get deeper insights into the function of PLCs, we investigated their putative involvement in the intracellular lifestyle of M. tuberculosis, with emphasis on phagosomal rupture and virulence, thereby re-visiting a research theme of longstanding interest. Through the construction and use of an M. tuberculosis H37Rv PLC-null mutant (ΔPLC) and control strains, we found that PLCs of M. tuberculosis were not required for induction of phagosomal rupture and only showed marginal, if any, impact on virulence of M. tuberculosis in the cellular and mouse infection models used in this study. In contrast, we found that PLC-encoding genes were strongly upregulated under phosphate starvation and that PLC-proficient M. tuberculosis strains survived better than ΔPLC mutants under conditions where phosphatidylcholine served as sole phosphate source, opening new perspectives for studies on the role of PLCs in the lifecycle of M. tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/enzimologia , Fosfolipases Tipo C/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Colorimetria , Feminino , Humanos , Estágios do Ciclo de Vida , Pulmão/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Óperon/genética , Fagossomos/metabolismo , Fosfatidilcolinas/metabolismo , Baço/microbiologia , Tuberculose/microbiologia , Tuberculose/patologia , Fosfolipases Tipo C/deficiência , Fosfolipases Tipo C/genética , Virulência/genética
9.
Mol Microbiol ; 90(3): 612-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23998761

RESUMO

Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.


Assuntos
Genes Bacterianos , Lipídeos/biossíntese , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium/genética , Peptídeo Sintases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Perfilação da Expressão Gênica , Variação Genética , Genoma Bacteriano , Humanos , Mutação INDEL , Dados de Sequência Molecular , Família Multigênica , Mycobacterium/classificação , Mycobacterium/patogenicidade , Polimorfismo de Nucleotídeo Único
10.
Cell Microbiol ; 13(5): 692-704, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21143571

RESUMO

Changes in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M. abscessus is able to switch from a smooth (S) to a rough (R) morphotype by the loss of a surface glycopeptidolipid. R variants are associated with severe clinical forms and a 'hyper-proinflammatory' response in ex vivo and in vivo models. Using partitioning of cell surface components we found that a complex fraction, more abundant in R variants than in S variants, made a major contribution to the TLR-2-dependent hyper-proinflammatory response induced by R variants. Lipoproteins were the main TLR-2 agonists in this fraction, consistent with the larger amounts of 16 lipoproteins in cell surface extracts from R variants; 15 out of 16 being more strongly induced in R variant than in S variant. Genetic interruption of glycopeptidolipid pathway in wild-type S variant resulted in R phenotype with similar induction of lipoprotein genes. In conclusion, R morphotype in M. abscessus is associated with increased synthesis/exposure at the cell surface of lipoproteins, these changes profoundly modifying the innate immune response through TLR-2-dependent mechanisms.


Assuntos
Lipoproteínas/metabolismo , Mycobacterium/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Membrana Celular/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Glicopeptídeos/imunologia , Glicopeptídeos/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Lipoproteínas/imunologia , Macrófagos , Camundongos , Mycobacterium/imunologia , Mycobacterium/patogenicidade , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Fenótipo , Reação em Cadeia da Polimerase , Receptor 2 Toll-Like/agonistas , Virulência
11.
Radiat Res ; 175(1): 66-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175349

RESUMO

Ionizing radiation causes rapid and acute suppression of hematopoietic cells that manifests as the hematopoietic syndrome. However, the roles of molecules and regulatory pathways induced in vivo by irradiation of different hematopoietic cells have not been completely elaborated. Using a strategy that combined different microarray bioinformatics tools, we identified gene networks that might be involved in the early response of hematopoietic cells radiation response in vivo. The grouping of similar time-ordered gene expression profiles using quality threshold clustering enabled the successful identification of common binding sites for 56 transcription factors that may be involved in the regulation of the early radiation response. We also identified novel genes that are responsive to the transformation-related protein 53; all of these genes were biologically validated in p53-transgenic null mice. Extension of the analysis to purified bone marrow cells including highly purified long-term hematopoietic stem cells, combined with functional classification, provided evidence of gene expression modifications that were largely unknown in this primitive population. Our methodology proved particularly useful for analyzing the transcriptional regulation of the complex ionizing radiation response of hematopoietic cells. Our data may help to elucidate the molecular mechanisms involved in tissue radiosensitivity and to identify potential targets for improving treatment in radiation emergencies.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos da radiação , Animais , Antígenos CD/genética , Sítios de Ligação , Conexina 43/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Imunoglobulinas/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Tolerância a Radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/deficiência , Antígeno CD83
12.
Int J Radiat Biol ; 85(8): 656-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19637078

RESUMO

PURPOSE: To identify transcriptional gene-networks involved in the early in vivo response of liver cells to radiation exposure and improve our understanding of the molecular processes responsible for tissue radiosensitivity. MATERIALS AND METHODS: Transcriptome variations of liver RNA samples were measured 3 hours post-irradiation using microarray technology. The results were confirmed and extended using real-time polymerase-chain-reaction (RT-PCR). RESULTS: We identified quantitative changes in the expression of 126 genes, most of which were observed for the first time. We show that some modifications, such as the upregulation of the cyclin-dependent kinase inhibitor 1A (Cdkn1A) gene, persisted for at least two months after the initial exposure. Other genes regulated by the transformation-related protein 53 (Trp53/p53) such as Bcl2-associated X protein (Bax) or etoposide-induced-2.4 (Ei24/PIG8) were not upregulated. Grouping differentially expressed genes into functional categories revealed that the primary response of liver cells to radiation exposure was the enhancement of oxidoreductase activity and inhibition of cell proliferation, involving cell cycle progression and apoptosis-related genes. CONCLUSIONS: The data provides evidence of gene expression modifications associated with the hepatic response to radiation exposure. One of the main differences observed with radiation-sensitive tissues such as the spleen was cell proliferation. The comparison of our data with transcriptome modifications in different biological models enabled the identification of networks of genes that might be co-regulated. Overall, our expression data revealed genes and cellular pathways that might help to improve our understanding of the molecular basis underlying tissue radiosensitivity and to identify possible targets for novel therapeutic strategies.


Assuntos
Perfilação da Expressão Gênica , Fígado/efeitos da radiação , Tolerância a Radiação , Animais , Apoptose , Inibidor de Quinase Dependente de Ciclina p21/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína MyoD/genética , Análise de Sequência com Séries de Oligonucleotídeos , Radiação Ionizante , Fator de Necrose Tumoral alfa/genética , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/genética
13.
Radiat Res ; 166(5): 746-56, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17067202

RESUMO

Accurate estimation of the dose of ionizing radiation to which individuals have been exposed is critical for therapeutic treatment. We investigated whether gene expression profiles could be used to evaluate the dose received, thereby serving as a biological dosimeter. We used cDNA microarrays to monitor changes in gene expression profiles induced by ionizing radiation in mouse total blood. The subsets of genes best characterizing each dose were identified by resampling the original data set and calculating the intersection of the dose signatures. This analytical strategy minimizes the impact of potential genetic/epigenetic variation between mice and overcomes the bias in gene selection inherent to microarray technology. The significance of the identified signatures was evaluated by monitoring the type I error rate by in silico negative control simulation. Based on the distribution of the mean ratios of the selected probes, we were able to identify transcription profiles giving 83% to 100% correct estimation of the dose received by test mice, demonstrating that the selected probes could be used to determine the dose of radiation to which the animals had been exposed. This method could potentially be generalized to determine the level of exposure to other toxins and could be used to develop new related clinical applications.


Assuntos
Algoritmos , Proteínas Sanguíneas/análise , Exposição Ambiental/análise , Expressão Gênica/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Radiometria/métodos , Animais , Carga Corporal (Radioterapia) , Relação Dose-Resposta à Radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Radiação Ionizante , Eficiência Biológica Relativa
14.
Blood ; 106(6): 1965-74, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15947096

RESUMO

Our knowledge of the molecular mechanisms that regulate hematopoiesis in physiologic and pathologic conditions is limited. Using a molecular approach based on cDNA microarrays, we demonstrated the emergence of an alternative pathway for mature bone marrow cell recovery after the programmed and reversible eradication of CD41+ cells in transgenic mice expressing a conditional toxigene targeted by the platelet alphaIIb promoter. The expression profile of the newly produced CD41+ cells showed high levels of transcripts encoding Ezh2, TdT, Rag2, and various immunoglobulin (Ig) heavy chains. In this context, we identified and characterized a novel population of Lin-Sca-1hi c-Kit- cells, with a lymphoid-like expression pattern, potentially involved in the reconstitution process. Our study revealed novel transcriptional cross talk between myeloid and lymphoid lineages and identified gene expression modifications that occur in vivo under these particular stress conditions, opening important prospects for therapeutic applications.


Assuntos
Células da Medula Óssea/fisiologia , Hematopoese , Megacariócitos/citologia , Glicoproteína IIb da Membrana de Plaquetas , Animais , Linhagem da Célula , DNA Nucleotidilexotransferase/genética , Proteínas de Ligação a DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Perfilação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Linfócitos/fisiologia , Camundongos , Camundongos Transgênicos , Células Mieloides/fisiologia , Glicoproteína IIb da Membrana de Plaquetas/genética , Complexo Repressor Polycomb 2 , Proteínas , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA