Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1703, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402212

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases/metabolismo
2.
J Am Chem Soc ; 144(11): 4925-4941, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35282679

RESUMO

Germline antibodies, the initial set of antibodies produced by the immune system, are critical for host defense, and information about their binding properties can be useful for designing vaccines, understanding the origins of autoantibodies, and developing monoclonal antibodies. Numerous studies have found that germline antibodies are polyreactive with malleable, flexible binding pockets. While insightful, it remains unclear how broadly this model applies, as there are many families of antibodies that have not yet been studied. In addition, the methods used to obtain germline antibodies typically rely on assumptions and do not work well for many antibodies. Herein, we present a distinct approach for isolating germline antibodies that involves immunizing activation-induced cytidine deaminase (AID) knockout mice. This strategy amplifies antigen-specific B cells, but somatic hypermutation does not occur because AID is absent. Using synthetic haptens, glycoproteins, and whole cells, we obtained germline antibodies to an assortment of clinically important tumor-associated carbohydrate antigens, including Lewis Y, the Tn antigen, sialyl Lewis C, and Lewis X (CD15/SSEA-1). Through glycan microarray profiling and cell binding, we demonstrate that all but one of these germline antibodies had high selectivity for their glycan targets. Using molecular dynamics simulations, we provide insights into the structural basis of glycan recognition. The results have important implications for designing carbohydrate-based vaccines, developing anti-glycan monoclonal antibodies, and understanding antibody evolution within the immune system.


Assuntos
Anticorpos Monoclonais , Antígenos Glicosídicos Associados a Tumores , Animais , Anticorpos Monoclonais/química , Biomarcadores Tumorais , Carboidratos , Células Germinativas , Camundongos , Camundongos Knockout , Polissacarídeos/química
3.
J Med Chem ; 64(15): 11418-11431, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34279947

RESUMO

DAG-lactones represent useful templates for the design of potent and selective C1 domain ligands for PKC isozymes. The ester moiety at the sn-1 position, a common feature in this template, is relevant for C1 domain interactions, but it represents a labile group susceptible to endogenous esterases. An interesting challenge involves replacing the ester group of these ligands while still maintaining biological activity. Here, we present the synthesis and functional characterization of novel diacylglycerol-lactones containing heterocyclic ring substituents at the sn-1 position. Our results showed that the new compound 10B12, a DAG-lactone with an isoxazole ring, binds PKCα and PKCε with nanomolar affinity. Remarkably, 10B12 displays preferential selectivity for PKCε translocation in cells and induces a PKCε-dependent reorganization of the actin cytoskeleton into peripheral ruffles in lung cancer cells. We conclude that introducing a stable isoxazole ring as an ester surrogate in DAG-lactones emerges as a novel structural approach to achieve PKC isozyme selectivity.


Assuntos
Diglicerídeos/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos/farmacologia , Lactonas/farmacologia , Proteína Quinase C/metabolismo , Diglicerídeos/síntese química , Diglicerídeos/química , Relação Dose-Resposta a Droga , Células HeLa , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Isoenzimas/metabolismo , Lactonas/síntese química , Lactonas/química , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 25(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276504

RESUMO

Due to its antiangiogenic and anti-immunomodulatory activity, thalidomide continues to be of clinical interest despite its teratogenic actions, and efforts to synthesize safer, clinically active thalidomide analogs are continually underway. In this study, a cohort of 27 chemically diverse thalidomide analogs was evaluated for antiangiogenic activity in an ex vivo rat aorta ring assay. The protein cereblon has been identified as the target for thalidomide, and in silico pharmacophore analysis and molecular docking with a crystal structure of human cereblon were used to investigate the cereblon binding abilities of the thalidomide analogs. The results suggest that not all antiangiogenic thalidomide analogs can bind cereblon, and multiple targets and mechanisms of action may be involved.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores da Angiogênese/farmacologia , Aorta/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Inibidores da Angiogênese/química , Animais , Simulação por Computador , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Cell Death Dis ; 10(10): 689, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534138

RESUMO

The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention.


Assuntos
Oxirredutases do Álcool/genética , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Feminino , Humanos
6.
Medchemcomm ; 9(12): 2000-2007, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647878

RESUMO

Non-B DNA structures represent intriguing and challenging targets for small molecules. For example, the promoter of the HRAS oncogene contains multiple G-quadruplex and i-motif structures, atypical globular folds that serve as molecular switches for gene expression. Of the two, i-motif structures are far less studied. Here, we report the first example of small organic compounds that directly interact with the hras-1Y i-motif. We use a small molecule microarray screen to identify drug-like small molecules that bind to the hras-1Y i-motif but not to several other DNA or RNA secondary structures. Two different lead compounds, 1 and 2, were discovered to have 7.4 ± 5.3 µM and 5.9 ± 3.7 µM binding affinity by surface plasmon resonance and similar affinity by fluorescence titration. A structure-activity relationship (SAR) was developed and two improved analogues of 2 demonstrated submicromolar binding affinities. Both compounds display pH-dependent binding, indicating that they interact with the DNA only when the i-motif is properly folded. Chemical shift perturbation shows that 1 alters the structure of the i-motif, while 2 has no effect on the i-motif conformation, indicating different modes of interaction.

7.
Cell Rep ; 20(7): 1681-1691, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813678

RESUMO

Antibodies play a crucial role in host defense and are indispensable research tools, diagnostics, and therapeutics. Antibody generation involves binding of genomically encoded germline antibodies followed by somatic hypermutation and in vivo selection to obtain antibodies with high affinity and selectivity. Understanding this process is critical for developing monoclonal antibodies, designing effective vaccines, and understanding autoantibody formation. Prior studies have found that antibodies to haptens, peptides, and proteins evolve from polyspecific germline antibodies. The immunological evolution of antibodies to mammalian glycans has not been studied. Using glycan microarrays, protein microarrays, cell binding studies, and molecular modeling, we demonstrate that therapeutic antibodies to the tumor-associated ganglioside GD2 evolved from highly specific germline precursors. The results have important implications for developing vaccines and monoclonal antibodies that target carbohydrate antigens. In addition, they demonstrate an alternative pathway for antibody evolution within the immune system that is distinct from the polyspecific germline pathway.


Assuntos
Anticorpos Monoclonais/química , Linfócitos B/imunologia , Gangliosídeos/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Linfócitos B/citologia , Sítios de Ligação , Sequência de Carboidratos , Linhagem Celular Tumoral , Gangliosídeos/química , Gangliosídeos/imunologia , Humanos , Cinética , Melanócitos/imunologia , Melanócitos/metabolismo , Melanócitos/patologia , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/imunologia , Análise Serial de Proteínas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
8.
Bioorg Med Chem ; 25(12): 2971-2980, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28392275

RESUMO

C1 domain-containing proteins, such as protein kinase C (PKC), have a central role in cellular signal transduction. Their involvement in many diseases, including cancer, cardiovascular disease, and immunological and neurological disorders has been extensively demonstrated and has prompted a search for small molecules to modulate their activity. By employing a diacylglycerol (DAG)-lactone template, we have been able to develop ultra potent analogs of diacylglycerol with nanomolar binding affinities approaching those of complex natural products such as phorbol esters and bryostatins. One current challenge is the development of selective ligands capable of discriminating between different protein family members. Recently, structure-activity relationship studies have shown that the introduction of an indole ring as a DAG-lactone substituent yielded selective Ras guanine nucleotide-releasing protein (RasGRP1) activators when compared to PKCα and PKCε. In the present work, we examine the effects of ligand selectivity relative to the orientation of the indole ring and the nature of the DAG-lactone template itself. Our results show that the indole ring must be attached to the lactone moiety through the sn-2 position in order to achieve RasGRP1 selectivity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Indóis/química , Indóis/farmacologia , Lactonas/química , Lactonas/farmacologia , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteínas de Ligação a DNA/química , Fatores de Troca do Nucleotídeo Guanina/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteína Quinase C-alfa/química , Proteína Quinase C-épsilon/química , Relação Estrutura-Atividade
9.
Org Lett ; 19(7): 1726-1729, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28345939

RESUMO

A previously uncharacterized pyrroloiminoquinone natural product, macrophilone A, was isolated from the stinging hydroid Macrorhynchia philippina. The structure was assigned utilizing long-range NMR couplings and DFT calculations and proved by a concise, five-step total synthesis. Macrophilone A and a synthetic analogue displayed potent biological activity, including increased intracellular reactive oxygen species levels and submicromolar cytotoxicity toward lung adenocarcinoma cells.


Assuntos
Quinonas/química , Produtos Biológicos , Estrutura Molecular , Espécies Reativas de Oxigênio
10.
J Am Chem Soc ; 136(38): 13202-8, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25207434

RESUMO

A convergent synthesis of a des-B-ring bryostatin analogue is described. This analogue was found to undergo an unexpected ring expansion of the bryolactone core to generate the corresponding 21-membered macrocycle. The parent analogue and the ring-expanded product both displayed nanomolar binding affinity for PKC. Despite containing A-ring substitution identical to that of bryostatin 1 and displaying bryostatin-like biological function, the des-B-ring analogues displayed a phorbol-like biological function in cells. These studies shed new light on the role of the bryostatin B-ring in conferring bryo-like biological function to bryostatin analogues.


Assuntos
Antineoplásicos/química , Produtos Biológicos/química , Briostatinas/química , Briozoários/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Briostatinas/síntese química , Briostatinas/farmacologia , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Forbóis/farmacologia , Proteína Quinase C/metabolismo
11.
J Am Chem Soc ; 136(38): 13209-16, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25207655

RESUMO

The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity.


Assuntos
Antineoplásicos/química , Briostatinas/química , Briozoários/química , Acetato de Tetradecanoilforbol/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Briostatinas/síntese química , Briostatinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrogenação , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Modelos Moleculares , Proteína Quinase C-alfa/metabolismo , Acetato de Tetradecanoilforbol/síntese química , Acetato de Tetradecanoilforbol/farmacologia , Células U937
12.
Mar Drugs ; 12(8): 4593-601, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25196934

RESUMO

A cell-based high-throughput screen that assessed the cellular stability of a tumor suppressor protein PDCD4 (Programmed cell death 4) was used to identify a new guanidine-containing marine alkaloid mirabilin K (3), as well as the known compounds mirabilin G (1) and netamine M (2). The structures of these tricyclic guanidine alkaloids were established from extensive spectroscopic analyses. Compounds 1 and 2 inhibited cellular degradation of PDCD4 with EC50 values of 1.8 µg/mL and 2.8 µg/mL, respectively. Mirabilin G (1) and netamine M (2) are the first marine natural products reported to stabilize PDCD4 under tumor promoting conditions.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Guanidina/química , Guanidina/farmacologia , Poríferos/química , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células HEK293 , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Saponinas/química
13.
Bioorg Med Chem ; 22(12): 3123-40, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24794745

RESUMO

The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diglicerídeos/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Indóis/farmacologia , Lactonas/farmacologia , Neoplasias da Próstata/patologia , Proteína Quinase C/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Diglicerídeos/química , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Indóis/química , Lactonas/química , Masculino , Modelos Moleculares , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas
14.
J Chem Inf Model ; 54(3): 705-12, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24524735

RESUMO

Many of the structures in PubChem are annotated with activities determined in high-throughput screening (HTS) assays. Because of the nature of these assays, the activity data are typically strongly imbalanced, with a small number of active compounds contrasting with a very large number of inactive compounds. We have used several such imbalanced PubChem HTS assays to test and develop strategies to efficiently build robust QSAR models from imbalanced data sets. Different descriptor types [Quantitative Neighborhoods of Atoms (QNA) and "biological" descriptors] were used to generate a variety of QSAR models in the program GUSAR. The models obtained were compared using external test and validation sets. We also report on our efforts to incorporate the most predictive of our models in the publicly available NCI/CADD Group Web services ( http://cactus.nci.nih.gov/chemical/apps/cap).


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Bases de Dados de Compostos Químicos , Células HEK293 , Humanos , Modelos Biológicos , Software
15.
J Chem Inf Model ; 54(3): 713-9, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24451033

RESUMO

We describe a novel approach to RBF approximation, which combines two new elements: (1) linear radial basis functions and (2) weighting the model by each descriptor's contribution. Linear radial basis functions allow one to achieve more accurate predictions for diverse data sets. Taking into account the contribution of each descriptor produces more accurate similarity values used for model development. The method was validated on 14 public data sets comprising nine physicochemical properties and five toxicity endpoints. We also compared the new method with five different QSAR methods implemented in the EPA T.E.S.T. program. Our approach, implemented in the program GUSAR, showed a reasonable accuracy of prediction and high coverage for all external test sets, providing more accurate prediction results than the comparison methods and even the consensus of these methods. Using our new method, we have created models for physicochemical and toxicity endpoints, which we have made freely available in the form of an online service at http://cactus.nci.nih.gov/chemical/apps/cap.


Assuntos
Algoritmos , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Software , Animais , Simulação por Computador , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Bases de Dados Factuais , Internet , Redes Neurais de Computação , Ratos , Tetrahymena/efeitos dos fármacos , Tetrahymena/fisiologia , Testes de Toxicidade
16.
Future Med Chem ; 4(15): 1933-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23088274

RESUMO

BACKGROUND: The most important factor affecting metabolic excretion of compounds from the body is their half-life time. This provides an indication of compound stability of, for example, drug molecules. We report on our efforts to develop QSAR models for metabolic stability of compounds, based on in vitro half-life assay data measured in human liver microsomes. METHOD: A variety of QSAR models generated using different statistical methods and descriptor sets implemented in both open-source and commercial programs (KNIME, GUSAR and StarDrop) were analyzed. The models obtained were compared using four different external validation sets from public and commercial data sources, including two smaller sets of in vivo half-life data in humans. CONCLUSION: In many cases, the accuracy of prediction achieved on one external test set did not correspond to the results achieved with another test set. The most predictive models were used for predicting the metabolic stability of compounds from the open NCI database, the results of which are publicly available on the NCI/CADD Group web server ( http://cactus.nci.nih.gov ).


Assuntos
Biologia Computacional , Microssomos Hepáticos/metabolismo , Algoritmos , Bases de Dados Factuais , Meia-Vida , Humanos , Preparações Farmacêuticas/metabolismo , Relação Quantitativa Estrutura-Atividade , Software
17.
J Biol Chem ; 287(16): 13137-58, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22351766

RESUMO

C1 domains, the recognition motif of the second messenger diacylglycerol and of the phorbol esters, are classified as typical (ligand-responsive) or atypical (not ligand-responsive). The C1 domain of Vav1, a guanine nucleotide exchange factor, plays a critical role in regulation of Vav activity through stabilization of the Dbl homology domain, which is responsible for exchange activity of Vav. Although the C1 domain of Vav1 is classified as atypical, it retains a binding pocket geometry homologous to that of the typical C1 domains of PKCs. This study clarifies the basis for its failure to bind ligands. Substituting Vav1-specific residues into the C1b domain of PKCδ, we identified five crucial residues (Glu(9), Glu(10), Thr(11), Thr(24), and Tyr(26)) along the rim of the binding cleft that weaken binding potency in a cumulative fashion. Reciprocally, replacing these incompatible residues in the Vav1 C1 domain with the corresponding residues from PKCδ C1b (δC1b) conferred high potency for phorbol ester binding. Computer modeling predicts that these unique residues in Vav1 increase the hydrophilicity of the rim of the binding pocket, impairing membrane association and thereby preventing formation of the ternary C1-ligand-membrane binding complex. The initial design of diacylglycerol-lactones to exploit these Vav1 unique residues showed enhanced selectivity for C1 domains incorporating these residues, suggesting a strategy for the development of ligands targeting Vav1.


Assuntos
Diglicerídeos/metabolismo , Ésteres de Forbol/metabolismo , Proteínas Proto-Oncogênicas c-vav/química , Proteínas Proto-Oncogênicas c-vav/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Lactonas/metabolismo , Ligantes , Masculino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfolipídeos/metabolismo , Neoplasias da Próstata , Ligação Proteica/fisiologia , Proteína Quinase C-delta/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-vav/genética , Transdução de Sinais/fisiologia
18.
J Am Chem Soc ; 132(30): 10278-85, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20590096

RESUMO

Enigmazole A (1), a novel phosphate-containing macrolide, was isolated from a Papua New Guinea collection of the marine sponge Cinachyrella enigmatica. The structure of 1, including the absolute stereochemistry at all eight chiral centers, was determined by a combination of spectroscopic analyses and a series of microscale chemical derivatization studies. Compound 1 is comprised of an 18-membered phosphomacrolide that contains an embedded exomethylene-substituted tetrahydropyran ring and an acyclic portion that spans an embedded oxazole moiety. Two additional analogues, 15-O-methylenigmazole A and 13-hydroxy-15-O-methylenigmazole A, were also isolated and assigned. The enigmazoles are the first phosphomacrolides from a marine source and 1 exhibited significant cytotoxicity in the NCI 60-cell line antitumor screen, with a mean GI(50) of 1.7 microM.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Oxazóis/química , Oxazóis/farmacologia , Poríferos/química , Animais , Antineoplásicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Macrolídeos/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Neoplasias/tratamento farmacológico , Compostos Organofosforados/isolamento & purificação , Oxazóis/isolamento & purificação , Papua Nova Guiné
20.
J Med Chem ; 52(4): 943-51, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19199650

RESUMO

Hepatocyte growth factor (HGF) is an important regulator of normal development and homeostasis, and dysregulated signaling through the HGF receptor, Met, contributes to tumorigenesis, tumor progression, and metastasis in numerous human malignancies. The development of selective small-molecule inhibitors of oncogenic tyrosine kinases (TK) has led to well-tolerated, targeted therapies for a growing number of cancer types. To identify selective Met TK inhibitors, we used a high-throughput virtual screen of the 13.5 million compound ChemNavigator database to find compounds most likely to bind to the Met ATP binding site and to form several critical interactions with binding site residues predicted to stabilize the kinase domain in its inactive conformation. Subsequent biological screening of 70 in silico hit structures using cell-free and intact cell assays identified three active compounds with micromolar IC(50) values. The predicted binding modes and target selectivity of these compounds are discussed and compared to other known Met TK inhibitors.


Assuntos
Antineoplásicos/química , Simulação por Computador , Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores de Fatores de Crescimento/antagonistas & inibidores , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA