Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cancers (Basel) ; 16(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39123475

RESUMO

Esophageal cancer is a highly lethal malignancy, representing 5% of all cancer-related deaths. The two main subtypes are esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). While most research has focused on ESCC, few studies have analyzed EAC for transcriptional signatures linked to diagnosis or prognosis. In this study, we utilized single-cell RNA sequencing and bulk RNA sequencing to identify specific immune cell types that contribute to anti-tumor responses, as well as differentially expressed genes (DEGs). We have characterized transcriptional signatures, validated against a wide cohort of TCGA patients, that are capable of predicting clinical outcomes and the prognosis of EAC post-surgery with efficacy comparable to the currently accepted prognostic factors. In conclusion, our findings provide insights into the immune landscape and therapeutic targets of EAC, proposing novel immunological biomarkers for predicting prognosis, aiding in patient stratification for post-surgical outcomes, follow-up, and personalized adjuvant therapy decisions.

2.
NPJ Biofilms Microbiomes ; 10(1): 35, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555334

RESUMO

Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.


Assuntos
Infecções Bacterianas , Colestase , Neoplasias , Humanos , Biofilmes , Colestase/cirurgia , Stents/efeitos adversos , Stents/microbiologia
3.
Aging Cell ; 22(7): e13853, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157887

RESUMO

Hepatic metastasis is a clinical challenge for colorectal cancer (CRC). Senescent cancer cells accumulate in CRC favoring tumor dissemination. Whether this mechanism progresses also in metastasis is unexplored. Here, we integrated spatial transcriptomics, 3D-microscopy, and multicellular transcriptomics to study the role of cellular senescence in human colorectal liver metastasis (CRLM). We discovered two distinct senescent metastatic cancer cell (SMCC) subtypes, transcriptionally located at the opposite pole of epithelial (e) to mesenchymal (m) transition. SMCCs differ in chemotherapy susceptibility, biological program, and prognostic roles. Mechanistically, epithelial (e)SMCC initiation relies on nucleolar stress, whereby c-myc dependent oncogene hyperactivation induces ribosomal RPL11 accumulation and DNA damage response. In a 2D pre-clinical model, we demonstrated that RPL11 co-localized with HDM2, a p53-specific ubiquitin ligase, leading to senescence activation in (e)SMCCs. On the contrary, mesenchymal (m)SMCCs undergo TGFß paracrine activation of NOX4-p15 effectors. SMCCs display opposing effects also in the immune regulation of neighboring cells, establishing an immunosuppressive environment or leading to an active immune workflow. Both SMCC signatures are predictive biomarkers whose unbalanced ratio determined the clinical outcome in CRLM and CRC patients. Altogether, we provide a comprehensive new understanding of the role of SMCCs in CRLM and highlight their potential as new therapeutic targets to limit CRLM progression.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Senescência Celular , Transição Epitelial-Mesenquimal
4.
Cancer Immunol Res ; 11(4): 405-420, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652202

RESUMO

Patients with colorectal liver metastasis (CLM) present with heterogenous clinical outcomes and improved classification is needed to ameliorate the therapeutic output. Macrophages (Mϕ) hold promise as prognostic classifiers and therapeutic targets. Here, stemming from a single-cell analysis of mononuclear phagocytes infiltrating human CLM, we identified two Mϕ markers associated with distinct populations with opposite clinical relevance. The invasive margin of CLM was enriched in pro-inflammatory monocyte-derived Mϕ (MoMϕ) expressing the monocytic marker SERPINB2, and a more differentiated population, tumor-associated Mϕ (TAM), expressing glycoprotein nonmetastatic melanoma protein B (GPNMB). SERPINB2+ MoMϕ had an early inflammatory profile, whereas GPNMB+ TAMs were enriched in pathways of matrix degradation, angiogenesis, and lipid metabolism and were found closer to the tumor margin, as confirmed by spatial transcriptomics on CLM specimens. In a cohort of patients, a high infiltration of SERPINB2+ cells independently associated with longer disease-free survival (DFS; P = 0.033), whereas a high density of GPNMB+ cells correlated with shorter DFS (P = 0.012) and overall survival (P = 0.002). Cell-cell interaction analysis defined opposing roles for MoMϕ and TAMs, suggesting that SERPINB2+ and GPNMB+ cells are discrete populations of Mϕ and may be exploited for further translation to an immune-based stratification tool. This study provides evidence of how multi-omics approaches can identify nonredundant, clinically relevant markers for further translation to immune-based patient stratification tools and therapeutic targets. GPNMB has been shown to set Mϕ in an immunosuppressive mode. Our high dimensional analyses provide further evidence that GPNMB is a negative prognostic indicator and a potential player in the protumor function of Mϕ populations.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Prognóstico , Macrófagos/metabolismo , Monócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Blood Adv ; 7(14): 3458-3468, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-36469095

RESUMO

Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) with post-transplant cyclophosphamide is a curative treatment for many hematological malignancies, yet a majority of patients still suffers from recurrent infections. Post-transplant infusion of memory T-cells could potentially enhance immunological protection without increasing the risk of eliciting acute graft-versus-host disease, which is mainly induced by naïve T-cells. Here, we performed longitudinal analysis of the lymphocyte compartment in 19 patients who underwent haplo-HSCT previously enrolled in a phase II prospective clinical trial (www.clinicaltrials.gov as #NCT04687982), in which they received post-transplant CD45RA-depleted donor lymphocyte infusions (DLI). T-cell receptor sequencing analysis showed that, surprisingly, CD45RA-depleted DLI do not increase T-cell clonal diversity, but lead to prominent expansion of a selected number of infused memory T-cell clones, suggesting recruitment of these cells in the immune response. Pathogen-specific memory T-cells, including cytomegalovirus (CMV)-specific cells, were engrafted and were able to persist for at least 1 month. Deep immunophenotyping revealed strong polyfunctional effector CMV-specific T-cell responses in the majority of patients, with their expansion correlating with the frequency of CMV-specific cells in the donor. These findings provide a rationale behind the suggested improved protection against viral infections in patients receiving CD45RA-depleted DLI.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Células T de Memória , Estudos Prospectivos , Ciclofosfamida/uso terapêutico , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
6.
Front Immunol ; 13: 967737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263038

RESUMO

Monocytes are critical cells of the immune system but their role as effectors is relatively poorly understood, as they have long been considered only as precursors of tissue macrophages or dendritic cells. Moreover, it is known that this cell type is heterogeneous, but our understanding of this aspect is limited to the broad classification in classical/intermediate/non-classical monocytes, commonly based on their expression of only two markers, i.e. CD14 and CD16. We deeply dissected the heterogeneity of human circulating monocytes in healthy donors by transcriptomic analysis at single-cell level and identified 9 distinct monocyte populations characterized each by a profile suggestive of specialized functions. The classical monocyte subset in fact included five distinct populations, each enriched for transcriptomic gene sets related to either inflammatory, neutrophil-like, interferon-related, and platelet-related pathways. Non-classical monocytes included two distinct populations, one of which marked specifically by elevated expression levels of complement components. Intermediate monocytes were not further divided in our analysis and were characterized by high levels of human leukocyte antigen (HLA) genes. Finally, we identified one cluster included in both classical and non-classical monocytes, characterized by a strong cytotoxic signature. These findings provided the rationale to exploit the relevance of newly identified monocyte populations in disease evolution. A machine learning approach was developed and applied to two single-cell transcriptome public datasets, from gastrointestinal cancer and Coronavirus disease 2019 (COVID-19) patients. The dissection of these datasets through our classification revealed that patients with advanced cancers showed a selective increase in monocytes enriched in platelet-related pathways. Of note, the signature associated with this population correlated with worse prognosis in gastric cancer patients. Conversely, after immunotherapy, the most activated population was composed of interferon-related monocytes, consistent with an upregulation in interferon-related genes in responder patients compared to non-responders. In COVID-19 patients we confirmed a global activated phenotype of the entire monocyte compartment, but our classification revealed that only cytotoxic monocytes are expanded during the disease progression. Collectively, this study unravels an unexpected complexity among human circulating monocytes and highlights the existence of specialized populations differently engaged depending on the pathological context.


Assuntos
COVID-19 , Neoplasias Gastrointestinais , Humanos , Monócitos , Fatores Imunológicos/metabolismo , Interferons/metabolismo , Antígenos HLA/metabolismo
7.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35863820

RESUMO

BACKGROUND: More than 50% of all patients with colorectal cancer (CRC) develop liver metastases (CLM), a clinical condition characterized by poor prognosis and lack of reliable prognostic markers. Vδ1 cells are a subset of tissue-resident gamma delta (γδ) T lymphocytes endowed with a broad array of antitumor functions and showing a natural high tropism for the liver. However, little is known about their impact in the clinical outcomes of CLM. METHODS: We isolated human γδ T cells from peripheral blood (PB) and peritumoral (PT) tissue of 93 patients undergone surgical procedures to remove CLM. The phenotype of freshly purified γδ T cells was assessed by multiparametric flow cytometry, the transcriptional profiles by single cell RNA-sequencing, the functional annotations by Gene Ontology enrichment analyses and the clonotype by γδ T cell receptor (TCR)-sequencing. RESULTS: The microenvironment of CLM is characterized by a heterogeneous immune infiltrate comprising different subsets of γδ tumor-infiltrating lymphocytes (TILs) able to egress the liver and re-circulate in PB. Vδ1 T cells represent the largest population of γδ TILs within the PT compartment of CLM that is greatly enriched in Vδ1 T effector (TEF) cells expressing constitutive high levels of CD69. These Vδ1 CD69+ TILs express a distinct phenotype and transcriptional signature, show high antitumor potential and correlate with better patient clinical outcomes in terms of lower numbers of liver metastatic lesions and longer overall survival (OS). Moreover, intrahepatic CD69+ Vδ1 TILs can egress CLM tissue to re-circulate in PB, where they retain a phenotype, transcriptional signature and TCR clonal repertoires resembling their liver origin. Importantly, even the increased frequencies of the CD69+ terminally differentiated (TEMRA) Vδ1 cells in PB of patients with CLM significantly correlate with longer OS. The positive prognostic score of high frequencies of CD69+ TEMRA Vδ1 cells in PB is independent from the neoadjuvant chemotherapy and immunotherapy regimens administered to patients with CLM prior surgery. CONCLUSIONS: The enrichment of tissue-resident CD69+ Vδ1 TEMRA cells re-circulating at high frequencies in PB of patients with CLM limits tumor progression and represents a new important clinical tool to either predict the natural history of CLM or develop alternative therapeutic protocols of cellular therapies.


Assuntos
Neoplasias Colorretais , Subpopulações de Linfócitos T , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/citologia , Microambiente Tumoral
8.
J Hepatol ; 77(5): 1359-1372, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35738508

RESUMO

BACKGROUND & AIMS: The landscape and function of the immune infiltrate of intrahepatic cholangiocarcinoma (iCCA), a rare, yet aggressive tumor of the biliary tract, remains poorly characterized, limiting development of successful immunotherapies. Herein, we aimed to define the molecular characteristics of tumor-infiltrating leukocytes with a special focus on CD4+ regulatory T cells (Tregs). METHODS: We used high-dimensional single-cell technologies to characterize the T-cell and myeloid compartments of iCCA tissues, comparing these with their tumor-free peritumoral and circulating counterparts. We further used genomics and cellular assays to define the iCCA-specific role of a novel transcription factor, mesenchyme homeobox 1 (MEOX1), in Treg biology. RESULTS: We found poor infiltration of putative tumor-specific CD39+ CD8+ T cells accompanied by abundant infiltration of hyperactivated CD4+ Tregs. Single-cell RNA-sequencing identified an altered network of transcription factors in iCCA-infiltrating compared to peritumoral T cells, suggesting reduced effector functions by tumor-infiltrating CD8+ T cells and enhanced immunosuppression by CD4+ Tregs. Specifically, we found that expression of MEOX1 was highly enriched in tumor-infiltrating Tregs, and demonstrated that MEOX1 overexpression is sufficient to reprogram circulating Tregs to acquire the transcriptional and epigenetic landscape of tumor-infiltrating Tregs. Accordingly, enrichment of the MEOX1-dependent gene program in Tregs was strongly associated with poor prognosis in a large cohort of patients with iCCA. CONCLUSIONS: We observed abundant infiltration of hyperactivated CD4+ Tregs in iCCA tumors along with reduced CD8+ T-cell effector functions. Interfering with hyperactivated Tregs should be explored as an approach to enhance antitumor immunity in iCCA. LAY SUMMARY: Immune cells have the potential to slow or halt the progression of tumors. However, some tumors, such as intrahepatic cholangiocarcinoma, are associated with very limited immune responses (and infiltration of cancer-targeting immune cells). Herein, we show that a specific population of regulatory T cells (a type of immune cell that actually suppresses the immune response) are hyperactivated in intrahepatic cholangiocarcinoma. Targeting these cells could enable cancer-targeting immune cells to act more effectively and should be looked at as a potential therapeutic approach to this aggressive cancer type.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , RNA/metabolismo , Linfócitos T Reguladores , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Análise de Célula Única
9.
Front Immunol ; 13: 1074762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703985

RESUMO

Introduction: Adult-type diffuse gliomas are malignant primary brain tumors characterized by very poor prognosis. Dendritic cells (DCs) are key in priming antitumor effector functions in cancer, but their role in gliomas remains poorly understood. Methods: In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult patients with newly diagnosed diffuse gliomas by using multi-parametric flow cytometry and single-cell RNA sequencing. Results: We demonstrated that different subsets of DCs are present in the glioma microenvironment, whereas they are absent in cancer-free brain parenchyma. The largest cluster of TIDCs was characterized by a transcriptomic profile suggestive of severe functional impairment. Patients undergoing perioperative corticosteroid treatment showed a significant reduction of conventional DC1s, the DC subset with key functions in antitumor immunity. They also showed phenotypic and transcriptional evidence of a more severe functional impairment of TIDCs. Discussion: Overall, the results of this study indicate that functionally impaired DCs are recruited in the glioma microenvironment. They are severely affected by dexamethasone administration, suggesting that the detrimental effects of corticosteroids on DCs may represent one of the mechanisms contributing to the already reported negative prognostic impact of steroids on glioma patient survival.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Prognóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Corticosteroides/uso terapêutico , Células Dendríticas , Microambiente Tumoral
10.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34919143

RESUMO

Tumor-associated macrophages (TAMs) are correlated with the progression of prostatic adenocarcinoma (PCa). The mechanistic basis of this correlation and therapeutic strategies to target TAMs in PCa remain poorly defined. Here, single-cell RNA sequencing was used to profile the transcriptional landscape of TAMs in human PCa, leading to identification of a subset of macrophages characterized by dysregulation in transcriptional pathways associated with lipid metabolism. This subset of TAMs correlates positively with PCa progression and shorter disease-free survival and is characterized by an accumulation of lipids that is dependent on Marco. Mechanistically, cancer cell-derived IL-1ß enhances Marco expression on macrophages, and reciprocally, cancer cell migration is promoted by CCL6 released by lipid-loaded TAMs. Moreover, administration of a high-fat diet to tumor-bearing mice raises the abundance of lipid-loaded TAMs. Finally, targeting lipid accumulation by Marco blockade hinders tumor growth and invasiveness and improves the efficacy of chemotherapy in models of PCa, pointing to combinatorial strategies that may influence patient outcomes.


Assuntos
Lipídeos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Metabolismo dos Lipídeos , Lipídeos/química , Masculino , Redes e Vias Metabólicas , Camundongos , Neoplasias da Próstata/patologia , Análise de Célula Única
11.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
13.
Stem Cell Reports ; 16(11): 2607-2616, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678207

RESUMO

PBX1 regulates the balance between self-renewal and differentiation of hematopoietic stem cells and maintains proto-oncogenic transcriptional pathways in early progenitors. Its increased expression was found in myeloproliferative neoplasm (MPN) patients bearing the JAK2V617F mutation. To investigate if PBX1 contributes to MPN, and to explore its potential as therapeutic target, we generated the JP mouse strain, in which the human JAK2 mutation is induced in the absence of PBX1. Typical MPN features, such as thrombocythemia and granulocytosis, did not develop without PBX1, while erythrocytosis, initially displayed by JP mice, gradually resolved over time; splenic myeloid metaplasia and in vitro cytokine independent growth were absent upon PBX1 inactivation. The aberrant transcriptome in stem/progenitor cells from the MPN model was reverted by the absence of PBX1, demonstrating that PBX1 controls part of the molecular pathways deregulated by the JAK2V617F mutation. Modulation of the PBX1-driven transcriptional program might represent a novel therapeutic approach.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética
14.
Commun Biol ; 4(1): 1117, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552178

RESUMO

Luminal-like breast cancer (BC) constitutes the majority of BC subtypes, but, differently from highly aggressive triple negative BC, is poorly infiltrated by the immune system. The quality of the immune infiltrate in luminal-like BCs has been poorly studied, thereby limiting further investigation of immunotherapeutic strategies. By using high-dimensional single-cell technologies, we identify heterogeneous behavior within the tissue-resident memory CD8+ T (Trm) cells infiltrating luminal-like tumors. A subset of CD127- CD39hi Trm cells, preferentially present in the tumor compared to the adjacent normal breast tissue or peripheral blood, retains enhanced degranulation capacity compared to the CD127+ CD39lo Trm counterpart ex vivo, and is specifically associated with positive prognosis. Nevertheless, such prognostic benefit is lost in the presence of highly-suppressive CCR8hi ICOShi IRF4+ effector Tregs. Thus, combinatorial strategies aiming at boosting Trm function and infiltration while relieving from Treg-mediated immunosuppression should be investigated to achieve proper tumor control in luminal-like BCs.


Assuntos
Apirase/metabolismo , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos/metabolismo , Neoplasias da Mama/diagnóstico , Humanos , Prognóstico , Análise de Célula Única
15.
Nat Cancer ; 2(2): 218-232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34505065

RESUMO

Complement has emerged as a component of tumor promoting inflammation. We conducted a systematic assessment of the role of complement activation and effector pathways in sarcomas. C3-/-, MBL1/2-/- and C4-/- mice showed reduced susceptibility to 3-methylcholanthrene sarcomagenesis and transplanted sarcomas, whereas C1q and factor B deficiency had marginal effects. Complement 3a receptor (C3aR), but not C5aR1 and C5aR2, deficiency mirrored the phenotype of C3-/- mice. C3 and C3aR deficiency were associated with reduced accumulation and functional skewing of tumor-associated macrophages, increased T cell activation and response to anti-PD-1 therapy. Transcriptional profiling of sarcoma infiltrating macrophages and monocytes revealed the enrichment of MHC II-dependent antigen presentation pathway in C3-deficient cells. In patients, C3aR expression correlated with a macrophage population signature and C3 deficiency-associated signatures predicted better clinical outcome. These results suggest that the lectin pathway and C3a/C3aR axis are key components of complement and macrophage-mediated sarcoma promotion and immunosuppression.


Assuntos
Lectinas , Receptores de Complemento/metabolismo , Sarcoma , Animais , Ativação do Complemento/fisiologia , Humanos , Terapia de Imunossupressão , Lectinas/metabolismo , Camundongos , Monócitos/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Sarcoma/tratamento farmacológico
16.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502367

RESUMO

BACKGROUND: the neoplastic B cells of the Helicobacter pylori-related low-grade gastric mucosa-associated lymphoid tissue (MALT) lymphoma proliferate in response to H. pylori, however, the nature of the H. pylori antigen responsible for proliferation is still unknown. The purpose of the study was to dissect whether CagY might be the H. pylori antigen able to drive B cell proliferation. METHODS: the B cells and the clonal progeny of T cells from the gastric mucosa of five patients with MALT lymphoma were compared with those of T cell clones obtained from five H. pylori-infected patients with chronic gastritis. The T cell clones were assessed for their specificity to H. pylori CagY, cytokine profile and helper function for B cell proliferation. RESULTS: 22 of 158 CD4+ (13.9%) gastric clones from MALT lymphoma and three of 179 CD4+ (1.7%) clones from chronic gastritis recognized CagY. CagY predominantly drives Interferon-gamma (IFN-γ) and Interleukin-17 (IL-17) secretion by gastric CD4+ T cells from H. pylori-infected patients with low-grade gastric MALT lymphoma. All MALT lymphoma-derived clones dose dependently increased their B cell help, whereas clones from chronic gastritis lost helper activity at T-to-B-cell ratios greater than 1. CONCLUSION: the results obtained indicate that CagY drives both B cell proliferation and T cell activation in gastric MALT lymphomas.


Assuntos
Helicobacter pylori/enzimologia , Linfoma de Zona Marginal Tipo Células B/imunologia , Linfoma de Zona Marginal Tipo Células B/microbiologia , Idoso , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proliferação de Células , Feminino , Mucosa Gástrica/metabolismo , Gastrite/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Inflamação/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Estômago/patologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
17.
Blood ; 138(21): 2093-2105, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34125889

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased risk of cancers and inflammation-related diseases. This phenomenon becomes common in persons aged ≥80 years, in whom the implications of CHIP are not well defined. We performed a mutational screening in 1794 persons aged ≥80 years and investigated the relationships between CHIP and associated pathologies. Mutations were observed in one-third of persons aged ≥80 years and were associated with reduced survival. Mutations in JAK2 and splicing genes, multiple mutations (DNMT3A, TET2, and ASXL1 with additional genetic lesions), and variant allele frequency ≥0.096 had positive predictive value for myeloid neoplasms. Combining mutation profiles with abnormalities in red blood cell indices improved the ability of myeloid neoplasm prediction. On this basis, we defined a predictive model that identifies 3 risk groups with different probabilities of developing myeloid neoplasms. Mutations in DNMT3A, TET2, ASXL1, or JAK2 were associated with coronary heart disease and rheumatoid arthritis. Cytopenia was common in persons aged ≥80 years, with the underlying cause remaining unexplained in 30% of cases. Among individuals with unexplained cytopenia, the presence of highly specific mutation patterns was associated with myelodysplastic-like phenotype and a probability of survival comparable to that of myeloid neoplasms. Accordingly, 7.5% of subjects aged ≥80 years with cytopenia had presumptive evidence of myeloid neoplasm. In summary, specific mutational patterns define different risk of developing myeloid neoplasms vs inflammatory-associated diseases in persons aged ≥80 years. In individuals with unexplained cytopenia, mutational status may identify those subjects with presumptive evidence of myeloid neoplasms.


Assuntos
Hematopoiese Clonal , Mutação , Fatores Etários , Idoso de 80 Anos ou mais , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Doença das Coronárias/etiologia , Doença das Coronárias/genética , Feminino , Humanos , Leucemia Mieloide/etiologia , Leucemia Mieloide/genética , Masculino , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/genética
18.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34003794

RESUMO

Haploidentical hematopoietic stem cell transplantation (h-HSCT) represents an efficient curative approach for patients affected by hematologic malignancies in which the reduced intensity conditioning induces a state of immunologic tolerance between donor and recipient. However, opportunistic viral infections greatly affect h-HSCT clinical outcomes. NK cells are the first lymphocytes that recover after transplant and provide a prompt defense against human cytomegalovirus (HCMV) infection/reactivation. By undertaking a longitudinal single-cell computational profiling of multiparametric flow cytometry, we show that HCMV accelerates NK cell immune reconstitution together with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/NKp30lo NK cells. The frequency of this subset correlates with HCMV viremia, further increases in recipients experiencing multiple episodes of viral reactivations, and persists for months after the infection. The transcriptional profile of FACS-sorted CD158b1b2jpos NK cells confirmed the ability of HCMV to deregulate NKG2C, NKG2A, and NKp30 gene expression, thus inducing the expansion of NK cells with adaptive traits. These NK cells are characterized by the downmodulation of several gene pathways associated with cell migration, the cell cycle, and effector-functions, as well as by a state of metabolic/cellular exhaustion. This profile reflects the functional impairments of adaptive NK cells to produce IFN-γ, a phenomenon also due to the viral-induced expression of lymphocyte-activation gene 3 (LAG-3) and programmed cell death protein 1 (PD-1) checkpoint inhibitors.


Assuntos
Infecções por Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células Matadoras Naturais/imunologia , Análise de Célula Única/métodos , Transcriptoma/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Adulto Jovem
19.
NPJ Precis Oncol ; 5(1): 4, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542466

RESUMO

Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53 and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and provide meaningful insights about PMF progression that might guide personalized therapy.

20.
J Hepatol ; 74(6): 1373-1385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484774

RESUMO

BACKGROUND & AIMS: Little is known about the metabolic regulation of cancer stem cells (CSCs) in cholangiocarcinoma (CCA). We analyzed whether mitochondrial-dependent metabolism and related signaling pathways contribute to stemness in CCA. METHODS: The stem-like subset was enriched by sphere culture (SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and compared to cells cultured in monolayer. Extracellular flux analysis was examined by Seahorse technology and high-resolution respirometry. In patients with CCA, expression of factors related to mitochondrial metabolism was analyzed for possible correlation with clinical parameters. RESULTS: Metabolic analyses revealed a more efficient respiratory phenotype in CCA-SPH than in monolayers, due to mitochondrial oxidative phosphorylation. CCA-SPH showed high mitochondrial membrane potential and elevated mitochondrial mass, and over-expressed peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis. Targeting mitochondrial complex I in CCA-SPH using metformin, or PGC-1α silencing or pharmacologic inhibition (SR-18292), impaired spherogenicity and expression of markers related to the CSC phenotype, pluripotency, and epithelial-mesenchymal transition. In mice with tumor xenografts generated by injection of CCA-SPH, administration of metformin or SR-18292 significantly reduced tumor growth and determined a phenotype more similar to tumors originated from cells grown in monolayer. In patients with CCA, expression of PGC-1α correlated with expression of mitochondrial complex II and of stem-like genes. Patients with higher PGC-1α expression by immunostaining had lower overall and progression-free survival, increased angioinvasion and faster recurrence. In GSEA analysis, patients with CCA and high levels of mitochondrial complex II had shorter overall survival and time to recurrence. CONCLUSIONS: The CCA stem-subset has a more efficient respiratory phenotype and depends on mitochondrial oxidative metabolism and PGC-1α to maintain CSC features. LAY SUMMARY: The growth of many cancers is sustained by a specific type of cells with more embryonic characteristics, termed 'cancer stem cells'. These cells have been described in cholangiocarcinoma, a type of liver cancer with poor prognosis and limited therapeutic approaches. We demonstrate that cancer stem cells in cholangiocarcinoma have different metabolic features, and use mitochondria, an organelle located within the cells, as the major source of energy. We also identify PGC-1α, a molecule which regulates the biology of mitochondria, as a possible new target to be explored for developing new treatments for cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa , Fenótipo , Transdução de Sinais/genética , Animais , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Complexo II de Transporte de Elétrons/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Humanos , Indóis/administração & dosagem , Masculino , Metformina/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Intervalo Livre de Progressão , Propanóis/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transfecção , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA