Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36395058

RESUMO

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Estudos Prospectivos , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Peptídeos
2.
Anal Chem ; 94(50): 17379-17387, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490367

RESUMO

The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov2MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30-31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov2MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Espectrometria de Massas/métodos , Peptídeos , Sensibilidade e Especificidade
3.
Sci Rep ; 12(1): 19824, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400821

RESUMO

Sportomics is a subject-centered holistic method similar to metabolomics focusing on sports as the metabolic challenge. Dried blood spot is emerging as a technique due to its simplicity and reproducibility. In addition, mass spectrometry and integrative computational biology enhance our ability to understand exercise-induced modifications. We studied inflammatory blood proteins (Alpha-1-acid glycoprotein-A1AG1; Albumin; Cystatin C; C-reactive protein-CRP; Hemoglobin-HBA; Haptoglobin-HPT; Insulin-like growth factor 1; Lipopolysaccharide binding protein-LBP; Mannose-binding lectin-MBL2; Myeloperoxidase-PERM and Serum amyloid A1-SAA1), in 687 samples from 97 World-class and Olympic athletes across 16 sports in nine states. Data were analyzed with Spearman's rank-order correlation. Major correlations with CRP, LBP; MBL2; A1AG1, and SAA1 were found. The pairs CRP-SAA1 and CRP-LBP appeared with a robust positive correlation. Other pairs, LBP-SAA1; A1AG1-CRP; A1AG1-SAA1; A1AG1-MBL, and A1AG1-LBP, showed a broader correlation across the sports. The protein-protein interaction map revealed 1500 interactions with 44 core proteins, 30 of them linked to immune system processing. We propose that the inflammation follow-up in exercise can provide knowledge for internal cargo management in training, competition, recovery, doping control, and a deeper understanding of health and disease.


Assuntos
Lectina de Ligação a Manose , Esportes , Humanos , Reprodutibilidade dos Testes , Proteínas de Fase Aguda , Proteína C-Reativa/metabolismo , Atletas
4.
Bioanalysis ; 12(13): 937-955, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32253915

RESUMO

Aim: High-frequency longitudinal tracking of inflammation using dried blood microsamples provides a new window for personalized monitoring of infections, chronic inflammatory disease and clinical trials of anti-inflammatory drugs. Results/methodology: Using 1662 dried blood spot samples collected by 16 subjects over periods of weeks to years, we studied the behavior of 12 acute phase response and related proteins in inflammation events correlated with infection, vaccination, surgery, intense exercise and Crohn's disease. Proteins were measured using SISCAPA mass spectrometry and normalized to constant plasma volume using low-variance proteins, generating high precision within-person biomarker trajectories with well-characterized personal baselines. Discussion/conclusion: The results shed new light on the dynamic regulation of APR responses, offering a new approach to visualization of multidimensional inflammation trajectories.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Adulto , Idoso , Feminino , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
5.
N Biotechnol ; 33(5 Pt A): 494-502, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26772726

RESUMO

Efficient robotic workflows for trypsin digestion of human plasma and subsequent antibody-mediated peptide enrichment (the SISCAPA method) were developed with the goal of improving assay precision and throughput for multiplexed protein biomarker quantification. First, an 'addition only' tryptic digestion protocol was simplified from classical methods, eliminating the need for sample cleanup, while improving reproducibility, scalability and cost. Second, methods were developed to allow multiplexed enrichment and quantification of peptide surrogates of protein biomarkers representing a very broad range of concentrations and widely different molecular masses in human plasma. The total workflow coefficients of variation (including the 3 sequential steps of digestion, SISCAPA peptide enrichment and mass spectrometric analysis) for 5 proteotypic peptides measured in 6 replicates of each of 6 different samples repeated over 6 days averaged 3.4% within-run and 4.3% across all runs. An experiment to identify sources of variation in the workflow demonstrated that MRM measurement and tryptic digestion steps each had average CVs of ∼2.7%. Because of the high purity of the peptide analytes enriched by antibody capture, the liquid chromatography step is minimized and in some cases eliminated altogether, enabling throughput levels consistent with requirements of large biomarker and clinical studies.


Assuntos
Proteínas Sanguíneas/análise , Automação , Biomarcadores/análise , Biotecnologia , Proteínas Sanguíneas/química , Proteínas Sanguíneas/imunologia , Humanos , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Proteômica/métodos , Reprodutibilidade dos Testes , Robótica , Espectrometria de Massas em Tandem/métodos , Tripsina , Fluxo de Trabalho
6.
Clin Chem ; 59(10): 1514-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857672

RESUMO

BACKGROUND: Biomarker validation remains one of the most challenging constraints to the development of new diagnostic assays. To facilitate biomarker validation, we previously developed a chromatography-free stable isotope standards and capture by antipeptide antibodies (SISCAPA)-MALDI assay allowing rapid, high-throughput quantification of protein analytes in large sample sets. Here we applied this assay to the measurement of a surrogate proteotypic peptide from protein C inhibitor (PCI) in sera from patients with prostate cancer. METHODS: A 2-plex SISCAPA-MALDI assay for quantification of proteotypic peptides from PCI and soluble transferrin receptor (sTfR) was used to measure these peptides in 159 trypsin-digested sera collected from 51 patients with prostate cancer. These patients had been treated with radiation with or without neoadjuvant androgen deprivation. RESULTS: Patients who experienced biochemical recurrence of prostate cancer showed decreased serum concentrations of the PCI peptide analyte within 18 months of treatment. The PCI peptide concentrations remained increased in the sera of patients who did not experience cancer recurrence. Prostate-specific antigen concentrations had no predictive value during the same time period. CONCLUSIONS: The high-throughput, liquid chromatography-free SISCAPA-MALDI assay is capable of rapid quantification of proteotypic PCI and sTfR peptide analytes in complex serum samples. Decreased serum concentrations of the PCI peptide were found to be related to recurrence of prostate cancer in patients treated with radiation with or without hormone therapy. However, a larger cohort of patients will be required for unequivocal validation of the PCI peptide as a biomarker for clinical use.


Assuntos
Peptídeos/sangue , Neoplasias da Próstata/diagnóstico , Inibidor da Proteína C/sangue , Antagonistas de Androgênios/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Estudos Longitudinais , Masculino , Recidiva Local de Neoplasia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Proteólise , Receptores da Transferrina/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J Proteome Res ; 11(12): 5642-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23126378

RESUMO

We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents. Using this method, we have successfully quantitated LPS-binding protein and mesothelin (concentrations of ∼5000 ng/mL and ∼10 ng/mL, respectively) in human plasma. The method eliminates the need for upstream liquid-chromatography and can be multiplexed, thus facilitating quantitative analysis of proteins, including biomarkers, in large sample sets. The method is ideal for high-throughput biomarker validation after affinity enrichment and has the potential for applications in clinical laboratories.


Assuntos
Proteínas Sanguíneas/análise , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Peptídeos/sangue , Software , Proteínas de Fase Aguda/análise , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Biomarcadores/sangue , Proteínas de Transporte/análise , Cromatografia Líquida , Proteínas Ligadas por GPI/sangue , Humanos , Glicoproteínas de Membrana/análise , Mesotelina , Proteômica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
8.
Biochim Biophys Acta ; 1817(10): 1759-67, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22531154

RESUMO

In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes. Using an in vitro ubiquitin conjugating-proteasome degradation system, we show that the cytosolic proteasome can degrade UCP1 at a rate commensurate with the half-life of UCP1 (i.e. 30-72h in brown adipocytes and ~3h, in thymocytes). In addition, we demonstrate that the cytoplasmic proteasome is required for UCP1 degradation from mitochondria that the process is inhibited by the proteasome inhibitor MG132 and that dissipation of the mitochondrial membrane potential inhibits degradation of UCP1. There also appears to be a greater amount of ubiquitinylated UCP1 associated with BAT mitochondria from cold-acclimated animals. We have also identified (using immunoprecipitation coupled with mass spectrometry) ubiquitinylated proteins with molecular masses greater than 32kDa, as being UCP1. We conclude that there is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Assuntos
Canais Iônicos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/fisiologia , Adipócitos Marrons/enzimologia , Tecido Adiposo Marrom/enzimologia , Animais , Temperatura Baixa , Inibidores de Cisteína Proteinase/farmacologia , Leupeptinas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Ratos , Ratos Wistar , Timo/enzimologia , Fatores de Tempo , Ubiquitinação/efeitos dos fármacos , Proteína Desacopladora 1
9.
J Vis Exp ; (53)2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21841765

RESUMO

There is a great need for quantitative assays in measuring proteins. Traditional sandwich immunoassays, largely considered the gold standard in quantitation, are associated with a high cost, long lead time, and are fraught with drawbacks (e.g. heterophilic antibodies, autoantibody interference, 'hook-effect').(1) An alternative technique is affinity enrichment of peptides coupled with quantitative mass spectrometry, commonly referred to as SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Antibodies).(2) In this technique, affinity enrichment of peptides with stable isotope dilution and detection by selected/multiple reaction monitoring mass spectrometry (SRM/MRM-MS) provides quantitative measurement of peptides as surrogates for their respective proteins. SRM/MRM-MS is well established for accurate quantitation of small molecules (3, 4) and more recently has been adapted to measure the concentrations of proteins in plasma and cell lysates.(5-7) To achieve quantitation of proteins, these larger molecules are digested to component peptides using an enzyme such as trypsin. One or more selected peptides whose sequence is unique to the target protein in that species (i.e. "proteotypic" peptides) are then enriched from the sample using anti-peptide antibodies and measured as quantitative stoichiometric surrogates for protein concentration in the sample. Hence, coupled to stable isotope dilution (SID) methods (i.e. a spiked-in stable isotope labeled peptide standard), SRM/MRM can be used to measure concentrations of proteotypic peptides as surrogates for quantification of proteins in complex biological matrices. The assays have several advantages compared to traditional immunoassays. The reagents are relatively less expensive to generate, the specificity for the analyte is excellent, the assays can be highly multiplexed, enrichment can be performed from neat plasma (no depletion required), and the technique is amenable to a wide array of proteins or modifications of interest.(8-13) In this video we demonstrate the basic protocol as adapted to a magnetic bead platform.


Assuntos
Imunoensaio/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Animais , Camundongos , Osteopontina/análise , Fragmentos de Peptídeos/análise
10.
Mol Cell Proteomics ; 10(4): M110.005645, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21245105

RESUMO

Stable isotope standards and capture by antipeptide antibodies (SISCAPA) couples affinity enrichment of peptides with stable isotope dilution and detection by multiple reaction monitoring mass spectrometry to provide quantitative measurement of peptides as surrogates for their respective proteins. In this report, we describe a feasibility study to determine the success rate for production of suitable antibodies for SISCAPA assays in order to inform strategies for large-scale assay development. A workflow was designed that included a multiplex immunization strategy in which up to five proteotypic peptides from a single protein target were used to immunize individual rabbits. A total of 403 proteotypic tryptic peptides representing 89 protein targets were used as immunogens. Antipeptide antibody titers were measured by ELISA and 220 antipeptide antibodies representing 89 proteins were chosen for affinity purification. These antibodies were characterized with respect to their performance in SISCAPA-multiple reaction monitoring assays using trypsin-digested human plasma matrix. More than half of the assays generated were capable of detecting the target peptide at concentrations of less than 0.5 fmol/µl in human plasma, corresponding to protein concentrations of less than 100 ng/ml. The strategy of multiplexing five peptide immunogens was successful in generating a working assay for 100% of the targeted proteins in this evaluation study. These results indicate it is feasible for a single laboratory to develop hundreds of assays per year and allow planning for cost-effective generation of SISCAPA assays.


Assuntos
Proteínas Sanguíneas/imunologia , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Humanos , Soros Imunes , Imunoensaio/métodos , Espectrometria de Massas/métodos , Proteínas dos Microfilamentos/sangue , Proteínas dos Microfilamentos/imunologia , Técnicas de Diagnóstico Molecular , Peptídeos/imunologia , Coelhos , Sensibilidade e Especificidade
11.
Mol Cell Proteomics ; 8(5): 995-1005, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19196707

RESUMO

A SISCAPA (stable isotope standards and capture by anti-peptide antibodies) method for specific antibody-based capture of individual tryptic peptides from a digest of whole human plasma was developed using a simplified magnetic bead protocol and a novel rotary magnetic bead trap device. Following off-line equilibrium binding of peptides by antibodies and subsequent capture of the antibodies on magnetic beads, the bead trap permitted washing of the beads and elution of bound peptides inside a 150-microm-inner diameter capillary that forms part of a nanoflow LC-MS/MS system. The bead trap sweeps beads against the direction of liquid flow using a continuous succession of moving high magnetic field-gradient trap regions while mixing the beads with the flowing liquid. This approach prevents loss of low abundance captured peptides and allows automated processing of a series of SISCAPA reactions. Selected tryptic peptides of alpha(1)-antichymotrypsin and lipopolysaccharide-binding protein were enriched relative to a high abundance serum albumin peptide by 1,800 and 18,000-fold, respectively, as measured by multiple reaction monitoring. A large majority of the peptides that are bound nonspecifically in SISCAPA reactions were shown to bind to components other than the antibody (e.g. the magnetic beads), suggesting that substantial improvement in enrichment could be achieved by development of improved inert bead surfaces.


Assuntos
Anticorpos/imunologia , Separação Imunomagnética/instrumentação , Separação Imunomagnética/métodos , Marcação por Isótopo , Magnetismo , Microesferas , Peptídeos/análise , Proteínas Sanguíneas/análise , Cromatografia Líquida , Fluoresceína , Humanos , Espectrometria de Massas , Microfluídica
12.
PLoS Negl Trop Dis ; 3(2): e373, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19190729

RESUMO

BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides) to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27), a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced secretion of tumour necrosis factor alpha (TNF-alpha), a cytokine that is associated with inflammation and cachexia (wasting) in sleeping sickness patients. As a prelude to in vivo applications, high affinity antibodies to BMAP-18 were produced in rabbits and used in immuno-mass spectrometry assays to detect the intact peptide in human blood and plasma. CONCLUSIONS/SIGNIFICANCE: BMAP-18, a truncated form of the potent antimicrobial BMAP-27, showed low toxicity to mammalian cells, insect cells and the tsetse bacterial symbiont Sodalis glossinidius while retaining an ability to kill a variety of species and life cycle stages of pathogenic kinetoplastid parasites in vitro. BMAP-18 also inhibited secretion of TNF-alpha, an inflammatory cytokine that plays a role in the cachexia associated with African sleeping sickness. These findings support the idea that BMAP-18 should be explored as a candidate for therapy of economically important trypanosome-infected hosts, such as cattle, fish and humans, and for paratransgenic expression in Sodalis glossinidius, a bacterial symbiont in the tsetse vector, as a strategy for interference with trypanosome transmission.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Leishmania donovani/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Insetos , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células NIH 3T3 , Testes de Sensibilidade Parasitária , Proteínas/química , Proteínas/farmacologia , Ratos , Spodoptera , Tripanossomicidas/química , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Fator de Necrose Tumoral alfa/metabolismo
13.
J Immunol Methods ; 341(1-2): 86-96, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041872

RESUMO

A refined surface plasmon resonance method was developed to measure the kinetics of peptide binding to rabbit monoclonal antibodies (RabMAbs). Optimized amounts of RabMAbs were captured onto sensor chips from hybridoma supernatants followed by binding of free peptides from solution. This allowed kinetic measurement of monovalent interactions of peptides with single antigen binding sites on the antibodies and determination of affinity constants without complications contributed by avidity considerations. Peptide-binding responses were normalized for the amount of antibody present in each sample and a simple interaction model was fit to all of the binding responses simultaneously. As a result, the kinetic rate constants ka and kd, and the affinity constant KD (kd/ka), could be determined for each antibody interaction under identical conditions. Higher-resolution studies involving multiple concentrations of peptide antigens were performed to validate the reliability of single-concentration measurements. By combining data on affinity, activity and concentration, ranking of the antibody-containing supernatants was performed, allowing selection of high quality RabMAbs for binding of peptides in solution.


Assuntos
Anticorpos Monoclonais/química , Afinidade de Anticorpos/fisiologia , Peptídeos/química , Ressonância de Plasmônio de Superfície/métodos , Animais , Anticorpos Monoclonais/imunologia , Humanos , Hibridomas/citologia , Hibridomas/imunologia , Cinética , Peptídeos/imunologia , Coelhos
14.
Vaccine ; 25(12): 2331-9, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17229499

RESUMO

Despite continued progress in understanding the pathophysiology of tumours, curative therapeutic options are still lacking for the metastatic form of the disease. One approach that has gathered considerable interest is the creation of therapeutic vaccines using genetically engineered non-replicating viruses as vehicles to revive immunosurveillance mechanisms that may eradicate residual tumour cells. A perceived problem with this approach is that the number of non-replicating viruses used as a vaccine inoculum does not remotely approximate the total number of cells in the body, nor even the number of tumour cells in the case of large tumour burden or metastasis. Here, we addressed the hypothesis that a limited amount of inoculum (1x10(8) PFU) of recombinant non-replicating adenovirus encoding human TAP1 (AdhTAP1) can induce protective immunity against 1.5x10(5) TAP-deficient, metastatic melanoma cells transplanted into a normal mouse (total of approximately 1x10(11) body cells). We show that efficacious anti-tumour cytolytic T cell responses are indeed induced by injecting melanoma-bearing animals with small numbers of recombinant viruses, resulting in increases in tumour-infiltrating dendritic cells, enhanced memory T cell subpopulations and, most importantly, in increased animal survival. This novel approach uses a limited input inoculum relative to the tumour cell mass, and thus achieves an efficacious outcome that has so far eluded other vaccine, immunotherapeutic or gene therapeutic strategies where there is a requisite for the majority of tumour cells to be transduced for beneficial outcome to be achieved.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Adenoviridae/genética , Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Linfócitos T/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Antígenos H-2/imunologia , Antígenos H-2/metabolismo , Humanos , Immunoblotting , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL
15.
J Mol Neurosci ; 27(1): 107-23, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16055950

RESUMO

We showed previously that early chick neuroblasts stop proliferating and undergo apoptosis when deprived of endogenous pituitary adenylate cyclase-activating polypeptide (PACAP). To identify proteins involved in these processes, we blocked the primary PACAP receptor and determined protein changes using isotope-coded affinity tag (ICAT) analysis. Cell cycle exit was characterized by a decrease in proteins regulating ribosome biogenesis and protein translation. Apoptosis was linked directly to a tumor suppressor that increases apoptosome activity and indirectly to reduced mitochondrial activity. ICAT analysis, combined with flow cytometric analysis, suggested that some cells were differentiating, rather than undergoing apoptosis. In summary, we have confirmed that withdrawal of PACAP from early chick neuroblasts causes cell cycle exit and apoptosis, and identified proteins involved in proliferation, exit, apoptosis, and possibly differentiation.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Cicloeximida/metabolismo , Inibidores Enzimáticos/metabolismo , Marcação por Isótopo , Proteínas Mitocondriais/metabolismo , Fatores de Crescimento Neural/antagonistas & inibidores , Neurônios/citologia , Neuropeptídeos/antagonistas & inibidores , Neurotransmissores/antagonistas & inibidores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Inibidores da Síntese de Proteínas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Estaurosporina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
J Proteome Res ; 3(2): 235-44, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15113099

RESUMO

A method (denoted SISCAPA) for quantitation of peptides in complex digests is described. In the method, anti-peptide antibodies immobilized on 100 nanoliter nanoaffinity columns are used to enrich specific peptides along with spiked stable-isotope-labeled internal standards of the same sequence. Upon elution from the anti-peptide antibody supports, electrospray mass spectrometry is used to quantitate the peptides (natural and labeled). In a series of pilot experiments, tryptic test peptides were chosen for four proteins of human plasma (hemopexin, alpha1 antichymotrypsin, interleukin-6, and tumor necrosis factor-alpha) from a pool of 10,203 in silico tryptic peptide candidates representing 237 known plasma components. Rabbit polyclonal antibodies raised against the chosen peptide sequences were affinity purified and covalently immobilized on POROS supports. Binding and elution from these supports was shown to provide an average 120-fold enrichment of the antigen peptide relative to others, as measured by selected ion monitoring (SIM) or selected reaction monitoring (SRM) electrospray mass spectrometry. The columns could be recycled with little loss in binding capacity, and generated peptide ion current measurements with cycle-to-cycle coefficients of variation near 5%. Anti-peptide antibody enrichment will contribute to increased sensitivity of MS-based assays, particularly for lower abundance proteins in plasma, and may ultimately allow substitution of a rapid bind/elute process for the time-consuming reverse phase separation now used as a prelude to online MS peptide assays. The method appears suitable for rapid generation of assays for defined proteins, and should find application in the validation of diagnostic protein panels in large sample sets.


Assuntos
Anticorpos Anti-Idiotípicos/química , Espectrometria de Massas/métodos , Peptídeos/química , Proteínas/química , Proteínas Sanguíneas/química , Cromatografia de Afinidade , Cromatografia Líquida , Haptenos/química , Hemopexina/química , Humanos , Interleucina-6/química , Íons , Nanotecnologia , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo , Fator de Necrose Tumoral alfa/química , alfa 1-Antiquimotripsina/química
17.
J Proteome Res ; 3(2): 228-34, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15113098

RESUMO

To facilitate the construction, functional characterization, and use of immunoadsorbents, we have developed a flow cytometry method that allows rapid assessment of large numbers of particle-bound antibodies. Protein G derivitized POROS beads were used to bind affinity-purified antibodies specific for synthetic peptides designed from human plasma proteins. The antibodies were covalently coupled to the beads and used to capture and release synthetic peptides that had been labeled at the C-terminus with the fluorochrome Alexa Fluor 488. Antibody coupling and specificity of antigen binding and release were measured by analysis of the POROS affinity beads by flow cytometry. The affinity-capture matrixes were also used through several antigen-binding and release cycles without loss of peptide binding efficiency. The ability to produce and characterize extremely small amounts of POROS affinity matrices will facilitate their use in protein microchemical procedures such as protein chip technology, monoclonal antibody screening and mass spectrometry, applications where analytes are limiting or present in low abundance in complex mixtures.


Assuntos
Citometria de Fluxo/métodos , Imunoadsorventes/química , Animais , Anticorpos/química , Antígenos/química , Cromatografia/métodos , Corantes/farmacologia , Humanos , Hidrazinas/farmacologia , Imunoadsorventes/farmacologia , Espectrometria de Massas/métodos , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA