Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 8: 254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038898

RESUMO

Mitochondrial Lon protease (LonP1) is a multi-function enzyme that regulates mitochondrial functions in several human malignancies, including colorectal cancer (CRC). The mechanism(s) by which LonP1 contributes to colorectal carcinogenesis is not fully understood. We found that silencing LonP1 leads to severe mitochondrial impairment and apoptosis in colon cancer cells. Here, we investigate the role of LonP1 in mitochondrial functions, metabolism, and epithelial-mesenchymal transition (EMT) in colon tumor cells and in metastasis. LonP1 was almost absent in normal mucosa, gradually increased from aberrant crypt foci to adenoma, and was most abundant in CRC. Moreover, LonP1 was preferentially upregulated in colorectal samples with mutated p53 or nuclear ß-catenin, and its overexpression led to increased levels of ß-catenin and decreased levels of E-cadherin, key proteins in EMT, in vitro. LonP1 upregulation also induced opposite changes in oxidative phosphorylation, glycolysis, and pentose pathway in SW480 primary colon tumor cells when compared to SW620 metastatic colon cancer cells. In conclusion, basal LonP1 expression is essential for normal mitochondrial function, and increased LonP1 levels in SW480 and SW620 cells induce a metabolic shift toward glycolysis, leading to EMT.

2.
Methods ; 134-135: 3-10, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133210

RESUMO

Circulating endothelial cells (CECs) detach from the intima monolayer after endothelial damages. Their circulating endothelial progenitors (CEPs) represent less than 0.01% of nucleated blood cells. Increased levels of CECs and CEPs have been detected in patients with several types of cancer, suggesting that they could be a useful blood-based marker for detecting a tumor, or for monitoring its clinical course. However, their routine monitoring is time consuming and technically challenging. Here, we present a flow cytometry method for quantifying such cells in a cohort of patients with hemangioblastoma (HB). HB is a rare benign tumor, responsible for 1-2.5% of primary intracranial tumors and up to 10% of spinal cord tumors, and for which no tools are available to predict the onset or recurrence in patients undergoing surgical removal of tumor mass. This method allowed us to accurately quantifying CEC and CEP before and after surgery. CEPs are present at high levels in HB patients than control before intervention, and decrease after tumor removal, suggesting that their percentage could represent a valid tool to monitor the disease onset and recurrence.


Assuntos
Biomarcadores Tumorais/sangue , Citometria de Fluxo , Hemangioblastoma/sangue , Células Neoplásicas Circulantes/patologia , Adolescente , Adulto , Idoso , Criança , Células Endoteliais/patologia , Feminino , Hemangioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Oncotarget ; 6(28): 25466-83, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26314956

RESUMO

Mitochondrial Lon protease (Lon) regulates several mitochondrial functions, and is inhibited by the anticancer molecule triterpenoid 2-cyano-3, 12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), or by its C-28 methyl ester derivative (CDDO-Me). To analyze the mechanism of action of triterpenoids, we investigated intramitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, mitochondrial mass, mitochondrial dynamics and morphology, and Lon proteolytic activity in RKO human colon cancer cells, in HepG2 hepatocarcinoma cells and in MCF7 breast carcinoma cells. We found that CDDO and CDDO-Me are potent stressors for mitochondria in cancer cells, rather than normal non-transformed cells. In particular, they: i) cause depolarization; ii) increase mitochondrial ROS, iii) alter mitochondrial morphology and proteins involved in mitochondrial dynamics; iv) affect the levels of Lon and those of aconitase and human transcription factor A, which are targets of Lon activity; v) increase level of protein carbonyls in mitochondria; vi) lead to intrinsic apoptosis. The overexpression of Lon can rescue cells from cell death, providing an additional evidence on the role of Lon in conditions of excessive stress load.


Assuntos
Proteases Dependentes de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Inibidores de Proteases/farmacologia , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Aconitato Hidratase/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Ácido Oleanólico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Superóxidos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA