Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 13(1): 1862451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33491549

RESUMO

Bispecific antibodies are an important and growing segment in antibody therapeutics, particularly in the immuno-oncology space. Manufacturing of a bispecific antibody with two different heavy chains is greatly simplified if the light chains can be the same for both arms of the antibody. Here, we introduce a strain of common light chain chickens, called OmniClic®, that produces antibody repertoires largely devoid of light chain diversity. The antibody repertoire in these chickens is composed of diverse human heavy chain variable regions capable of high-affinity antigen-specific binding and broad epitope diversity when paired with the germline human kappa light chain. OmniClic birds can be used in immunization campaigns for discovery of human heavy chains to different targets. Subsequent pairing of the heavy chain with a germline human kappa light chain serves to facilitate bispecific antibody production by increasing the efficiency of correct pairing. Abbreviations: AID: activation-induced cytidine deaminase; bsAb: bispecific antibody; CDR: complementarity-determining region; CL: light chain constant region; CmLC: common light chain; D: diversity region; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment crystallizable; FcRn: neonatal Fc receptor; FR: framework region; GEM: gel-encapsulated microenvironment; Ig: immunoglobulin; IMGT: the international ImMunoGeneTics information system®; J: joining region; KO: knockout; mAb: monoclonal antibody; NGS: next-generation sequencing; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PGC: primordial germ cell; PGRN: progranulin; TCR: T cell receptor; V: variable region; VK: kappa light chain variable region; VL: light chain variable region; VH: heavy chain variable region.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Galinhas/imunologia , Epitopos/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citometria de Fluxo/métodos , Humanos , Imunização/métodos , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/imunologia , Engenharia de Proteínas/métodos
2.
MAbs ; 11(6): 1036-1052, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31257988

RESUMO

Targeting the CD47-signal-regulatory protein α (SIRPα) pathway represents a novel therapeutic approach to enhance anti-cancer immunity by promoting both innate and adaptive immune responses. Unlike CD47, which is expressed ubiquitously, SIRPα expression is mainly restricted to myeloid cells and neurons. Therefore, compared to CD47-targeted therapies, targeting SIRPα may result in differential safety and efficacy profiles, potentially enabling lower effective doses and improved pharmacokinetics and pharmacodynamics. The development of effective SIRPα antagonists is restricted by polymorphisms within the CD47-binding domain of SIRPα, necessitating pan-allele reactive anti-SIRPα antibodies for therapeutic intervention in diverse patient populations. We immunized wild-type and human antibody transgenic chickens with a multi-allele and multi-species SIRPα regimen in order to discover pan-allelic and pan-mammalian reactive anti-SIRPα antibodies suitable for clinical translation. A total of 200 antibodies were isolated and screened for SIRPα reactivity from which approximately 70 antibodies with diverse SIRPα binding profiles, sequence families, and epitopes were selected for further characterization. A subset of anti-SIRPα antibodies bound to both human SIRPα v1 and v2 alleles with high affinity ranging from low nanomolar to picomolar, potently antagonized the CD47/SIRPα interaction, and potentiated macrophage-mediated antibody-dependent cellular phagocytosis in vitro. X-ray crystal structures of five anti-SIRPα antigen-binding fragments, each with unique epitopes, in complex with SIRPα (PDB codes 6NMV, 6NMU, 6NMT, 6NMS, and 6NMR) are reported. Furthermore, some of the anti-SIRPα antibodies cross-react with cynomolgus SIRPα and various mouse SIRPα alleles (BALB/c, NOD, BL/6), which can facilitate preclinical to clinical development. These properties provide an attractive rationale to advance the development of these anti-SIRPα antibodies as a novel therapy for advanced malignancies. Abbreviations: ADCC: antibody-dependent cellular cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; CFSE: carboxyfluorescein succinimidyl ester; Fab: fragment antigen binding; Fc: fragment crystallizable; FcγR: Fcγ receptor; Ig: immunoglobulin; IND: investigational new drug; MDM⊘: monocyte-derived macrophage; NOD: non-obese diabetic; scFv: single chain fragment variable; SCID: severe combined immunodeficiency; SIRP: signal-regulatory protein.


Assuntos
Anticorpos Monoclonais , Especificidade de Anticorpos , Antígenos de Diferenciação , Receptores Imunológicos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Diferenciação/química , Antígenos de Diferenciação/imunologia , Antígeno CD47/imunologia , Galinhas , Cristalografia por Raios X , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunoterapia , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Domínios Proteicos , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/química , Receptores Imunológicos/imunologia
3.
Stem Cells ; 27(6): 1255-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19489081

RESUMO

We recently demonstrated that somatic cells from adult primates could be reprogrammed into a pluripotent state by somatic cell nuclear transfer. However, the low efficiency with donor cells from one monkey necessitated the need for large oocyte numbers. Here, we demonstrate nearly threefold higher blastocyst development and embryonic stem (ES) cell derivation rates with different nuclear donor cells. Two ES cell lines were isolated using adult female rhesus macaque skin fibroblasts as nuclear donors and oocytes retrieved from one female, following a single controlled ovarian stimulation. In addition to routine pluripotency tests involving in vitro and in vivo differentiation into various somatic cell types, primate ES cells derived from reprogrammed somatic cells were also capable of contributing to cells expressing markers of germ cells. Moreover, imprinted gene expression, methylation, telomere length, and X-inactivation analyses were consistent with accurate and extensive epigenetic reprogramming of somatic cells by oocyte-specific factors.


Assuntos
Epigênese Genética , Fibroblastos/citologia , Técnicas de Transferência Nuclear , Oócitos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Reprogramação Celular/genética , Células-Tronco Embrionárias/citologia , Feminino , Expressão Gênica , Macaca mulatta , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Gene Expr Patterns ; 9(2): 94-108, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18996226

RESUMO

The rhesus monkey embryonic stem cell line 366.4 differentiates into serotonin neurons. We examined the genetic cascade during differentiation and compared ESC-derived serotonin neurons to adult monkey serotonin neurons. RNA was extracted from ESC colonies, embryoid bodies (EBs), neurospheres in selection (N1) and proliferation stages (N2), differentiated serotonin neurons (N3) and from laser captured (LC) serotonin neurons of spayed female macaques treated with placebo, estrogen (E), progesterone (P) or E+P. The RNA was labeled and hybridized to Rhesus Monkey Affymetrix Gene Chips (n=1 per stage and 2 per animal treatment). Gene expression was examined with GeneSifter software. 545 genes that were related to developmental processes showed a threefold or greater change between stages. TGFb, Wnt, VEGF and Hedgehog signaling pathways showed the highest percent of probe set changes during differentiation. Genes in the categories (a) homeobox binding and transcription factors, (b) growth factors and receptors, (c) brain and neural specific factors and (d) serotonin specific factors are reported. Pivotal genes were confirmed with quantitative RT-PCR. In the serotonin developmental cascade, FGFR2 was robustly expressed at each stage. GATA3 was robustly expressed in EBs. Sonic hedgehog (Shh), PTCH (Shh-R) and Fev1 transcription factor expression coincided with the induction of serotonin specific marker genes during N1-selection. A majority of the examined genes were expressed in adult serotonin neurons. However, in the ESC-derived neurons, there was significant over-representation of probe sets related to cell cycle, axon guidance & dorso-ventral axis formation. This analysis suggests that the 366.4 cell line possesses cues for serotonin differentiation at early stages of differentiation, but that ESC-derived serotonin neurons are still immature.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Neurônios/fisiologia , Serotonina/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Macaca mulatta , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Progesterona/farmacologia , Transdução de Sinais/genética
5.
Stem Cells ; 26(3): 756-66, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18192229

RESUMO

Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.


Assuntos
Células-Tronco Embrionárias/citologia , Macaca mulatta/embriologia , Partenogênese , Animais , Diferenciação Celular , Linhagem Celular , Separação Celular , Metilação de DNA , Embrião de Mamíferos , Células-Tronco Embrionárias/metabolismo , Feminino , Fertilização in vitro , Regulação da Expressão Gênica , Impressão Genômica , Genótipo , Heterozigoto , Histocompatibilidade , Humanos , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Síndrome de Prader-Willi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA