Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(3): e0249239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33788878

RESUMO

Combinatorial gut hormone therapy is one of the more promising strategies for identifying improved treatments for metabolic disease. Many approaches combine the established benefits of glucagon-like peptide-1 (GLP-1) agonism with one or more additional molecules with the aim of improving metabolic outcomes. Recent attention has been drawn to the glucose-dependent insulinotropic polypeptide (GIP) system due to compelling pre-clinical evidence describing the metabolic benefits of antagonising the GIP receptor (GIPR). We rationalised that benefit might be accrued from combining GIPR antagonism with GLP-1 agonism. Two GIPR peptide antagonists, GIPA-1 (mouse GIP(3-30)NH2) and GIPA-2 (NαAc-K10[γEγE-C16]-Arg18-hGIP(5-42)), were pharmacologically characterised and both exhibited potent antagonist properties. Acute in vivo administration of GIPA-1 during an oral glucose tolerance test (OGTT) had negligible effects on glucose tolerance and insulin in lean mice. In contrast, GIPA-2 impaired glucose tolerance and attenuated circulating insulin levels. A mouse model of diet-induced obesity (DIO) was used to investigate the potential metabolic benefits of chronic dosing of each antagonist, alone or in combination with liraglutide. Chronic administration studies showed expected effects of liraglutide, lowering food intake, body weight, fasting blood glucose and plasma insulin concentrations while improving glucose sensitivity, whereas delivery of either GIPR antagonist alone had negligible effects on these parameters. Interestingly, chronic dual therapy augmented insulin sensitizing effects and lowered plasma triglycerides and free-fatty acids, with more notable effects observed with GIPA-1 compared to GIPA-2. Thus, the co-administration of both a GIPR antagonist with a GLP1 agonist uncovers interesting beneficial effects on measures of insulin sensitivity, circulating lipids and certain adipose stores that seem influenced by the degree or nature of GIP receptor antagonism.


Assuntos
Polipeptídeo Inibidor Gástrico/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Glucose/metabolismo , Sequência de Aminoácidos , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/veterinária , Ácidos Graxos/sangue , Polipeptídeo Inibidor Gástrico/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Teste de Tolerância a Glucose , Secreção de Insulina , Liraglutida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Curva ROC , Triglicerídeos/sangue
2.
Sci Rep ; 10(1): 16130, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999377

RESUMO

Cardiovascular and renal complications are the predominant causes of morbidity and mortality amongst patients with diabetes. Development of novel treatments have been hampered by the lack of available animal models recapitulating the human disease. We hypothesized that experimental diabetes in rats combined with a cardiac or renal stressor, would mimic diabetic cardiomyopathy and nephropathy, respectively. Diabetes was surgically induced in male Sprague Dawley rats by 90% pancreatectomy (Px). Isoprenaline (Iso, 1 mg/kg, sc., 10 days) was administered 5 weeks after Px with the aim of inducing cardiomyopathy, and cardiac function and remodeling was assessed by echocardiography 10 weeks after surgery. Left ventricular (LV) fibrosis was quantified by Picro Sirius Red and gene expression analysis. Nephropathy was induced by Px combined with uninephrectomy (Px-UNx). Kidney function was assessed by measurement of glomerular filtration rate (GFR) and urine albumin excretion, and kidney injury was evaluated by histopathology and gene expression analysis. Px resulted in stable hyperglycemia, hypoinsulinemia, decreased C-peptide, and increased glycated hemoglobin (HbA1c) compared with sham-operated controls. Moreover, Px increased heart and LV weights and dimensions and caused a shift from α-myosin heavy chain (MHC) to ß-MHC gene expression. Isoprenaline treatment, but not Px, decreased ejection fraction and induced LV fibrosis. There was no apparent interaction between Px and Iso treatment. The superimposition of Px and UNx increased GFR, indicating hyperfiltration. Compared with sham-operated controls, Px-UNx induced albuminuria and increased urine markers of kidney injury, including neutrophil gelatinase-associated lipocalin (NGAL) and podocalyxin, concomitant with upregulated renal gene expression of NGAL and kidney injury molecule 1 (KIM-1). Whereas Px and isoprenaline separately produced clinical endpoints related to diabetic cardiomyopathy, the combination of the two did not accentuate disease development. Conversely, Px in combination with UNx resulted in several clinical hallmarks of diabetic nephropathy indicative of early disease development.


Assuntos
Cardiomiopatias Diabéticas/patologia , Nefropatias Diabéticas/patologia , Pancreatectomia/métodos , Albuminúria/complicações , Animais , Peptídeo C/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Fibrose , Taxa de Filtração Glomerular , Coração/fisiopatologia , Isoproterenol/farmacologia , Rim/metabolismo , Lipocalina-2/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal/complicações
3.
Sci Rep ; 9(1): 16161, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695063

RESUMO

The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Dieta Redutora , Derivação Gástrica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gliose/genética , Adiposidade , Animais , Astrócitos/metabolismo , Biomarcadores , Dieta Hiperlipídica , Ingestão de Alimentos , Proteína Glial Fibrilar Ácida/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Inflamação/genética , Microdissecção e Captura a Laser , Masculino , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Obesidade/etiologia , Obesidade/cirurgia , Peptídeo YY/sangue , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Redução de Peso
4.
Physiol Behav ; 192: 72-81, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540315

RESUMO

AIM: Analogues of several gastrointestinal peptide hormones have been developed into effective medicines for treatment of diseases such as type 2 diabetes mellitus (T2DM), obesity and short bowel syndrome (SBS). In this study, we aimed to explore whether the combination of glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) into a potent co-agonist could provide additional benefits compared to existing monotherapies. METHODS: A short-acting (GUB09-123) and a half-life extended (GUB09-145) GLP-1/GLP-2 co-agonist were generated using solid-phase peptide synthesis and tested for effects on food intake, body weight, glucose homeostasis, and gut proliferation in lean mice and in diabetic db/db mice. RESULTS: Sub-chronic administration of GUB09-123 to lean mice significantly reduced food intake, improved glucose tolerance, and increased gut volume, superior to monotherapy with the GLP-2 analogue teduglutide. Chronic administration of GUB09-123 to diabetic mice significantly improved glycemic control and showed persistent effects on gastric emptying, superior to monotherapy with the GLP-1 analogue liraglutide. Due to the short-acting nature of the molecule, no effects on body weight were observed, whereas a marked and robust intestinotrophic effect on mainly the small intestine volume and surface area was obtained. In contrast to GUB09-123, sub-chronic administration of a half-life extended GUB09-145 to lean mice caused marked dose-dependent effects on body weight while maintaining its potent intestinotrophic effect. CONCLUSION: Our data demonstrate that the GLP-1/GLP-2 co-agonists have effects on gut morphometry, showing a marked increase in intestinal volume and mucosal surface area. Furthermore, effects on glucose tolerance and long-term glycemic control are evident. Effects on body weight and gastric emptying are also observed depending on the pharmacokinetic properties of the molecule. We suggest that this novel co-agonistic approach could exemplify a novel concept for treatment of T2DM or SBS.


Assuntos
Fármacos Gastrointestinais/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 2 Semelhante ao Glucagon/agonistas , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Fármacos Gastrointestinais/síntese química , Fármacos Gastrointestinais/farmacocinética , Trato Gastrointestinal/fisiopatologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Liraglutida/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/síntese química , Peptídeos/farmacocinética , Distribuição Aleatória
5.
Mol Metab ; 5(4): 296-304, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069869

RESUMO

OBJECTIVE: The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. METHODS: Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. RESULTS: RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. CONCLUSION: RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA