Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 296: 106978, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827753

RESUMO

The industrial uses of peptidases have already been consolidated; however, their range of applications is increasing. Thus, the biochemical characterization of new peptidases could increase the range of their biotechnological applications. In silico analysis identified a gene encoding a putative serine peptidase from Purpureocillium lilacinum (Pl_SerPep), annotated as a cuticle-degrading enzyme. The Pl_SerPep gene product was expressed as a recombinant in a Komagataella phaffii (previously Pichia pastoris) expression system. The enzyme (rPl_SerPep) showed optimal pH and temperature of 8.0 and 60 °C, respectively. Moreover, rPl_SerPep has a higher thermal stability than the cuticle-degrading enzymes described elsewhere. The structural analysis indicated a conformational change in the rPl_SerPep secondary structure, which would allow an increase in catalytic activity at 60 °C. Komagataella phaffii secretes rPl_SerPep with the pro peptide in its inactive form. Low-resolution small-angle X-ray scattering (SAXS) analysis showed little mobility of the pro peptide portion, which indicates the apparent stability of the inactive form of the enzyme. The presence of 20 mM guanidine in the reaction resulted in the maintenance of activity, which was apparently a consequence of pro peptide structure flexibilization.


Assuntos
Peptídeo Hidrolases , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Serina/metabolismo
2.
Bioengineered ; 9(1): 30-37, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28857638

RESUMO

Peptidases are enzymes that cleave peptide bonds, yielding proteins and peptides. Enzymes in this class also perform several other functions, regulating the activation or inactivation of target substrates via proteolysis. Owing to these functions, peptidases have been extensively used in industrial and biotechnological applications. Given their potential functions, it is important to optimize the use of these enzymes, which requires determination of the specificity of each peptidase. The peptidase specificity must be taken into account in choosing a peptidase to catalyze the available protein source within the desired application. The specificity of a peptidase defines the profile of enzyme-substrate interactions, and for this the catalytic site and the arrangement of the amino acid residues involved in peptide bond cleavage need to be known. The catalytic sites of peptidases may be composed of several subsites that interact with amino acid residues for proteolysis. Filamentous fungi produce peptidases with varying specificity, and here we provide a review of those reported to date and their potential applications.


Assuntos
Compostos Cromogênicos/química , Proteínas Fúngicas/química , Fungos/enzimologia , Peptídeo Hidrolases/química , Peptídeos/química , Sequência de Aminoácidos , Domínio Catalítico , Compostos Cromogênicos/metabolismo , Ensaios Enzimáticos , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Cinética , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteólise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA