Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259672

RESUMO

The Sam (sterile alpha motif) domain from the lipid phosphatase Ship2 binds the Sam domain from the EphA2 receptor to negatively regulate receptor endocytosis and degradation. This interaction is primarily linked to pro-oncogenic effects. We report on the design and evaluation of EphA2-Sam/Ship2-Sam peptide inhibitors provided with positive charges and different aromatic characters. Starting from the sequence of previously identified Ship2-Sam targeting peptides, an in silico approach was set up to predict higher affinity peptide ligands. A few peptides were experimentally tested through an interdisciplinary approach. Interaction studies were performed by nuclear magnetic resonance spectroscopy and biolayer interferometry. 3D models of Ship2-Sam/peptide complexes were predicted by AlphaFold2. Cell-based assays were carried out to investigate whether such peptide sequences might have an influence on EphA2 signaling. The approach led to the identification of novel Ship2-Sam ligands and shed further light on original approaches to design inhibitors of the Ship2-Sam/EphA2-Sam interaction.

2.
Int J Biol Macromol ; 277(Pt 4): 134390, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111466

RESUMO

Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.


Assuntos
Proteínas Correpressoras , Mutação , Humanos , Sequência de Aminoácidos , Proteínas Correpressoras/química , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios Proteicos , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955408

RESUMO

Galectins (Gals) are small cytosolic proteins that bind ß-galactoside residues via their evolutionarily conserved carbohydrate recognition domain. Their dysregulation has been shown to be associated with many diseases. Consequently, targeting galectins for clinical applications has become increasingly relevant to develop tailored inhibitors selectively for one galectin. Accordingly, binding studies providing the molecular details of the interaction between galectin and inhibitor may be useful for the rational design of potent and selective antagonists. Gal-1 and Gal-3 are among the best-studied galectins, mainly for their roles in cancer progression; therefore, the molecular details of their interaction with inhibitors are demanded. This work gains more value by focusing on the interaction between Gal-1 and Gal-3 with the selenylated analogue of the Gal inhibitor thiodigalactose, characterized by a selenoglycoside bond (SeDG), and with unsymmetrical diglycosyl selenides (unsym(Se). Gal-1 and Gal-3 were produced heterologously and biophysically characterized. Interaction studies were performed by ITC, NMR spectroscopy, and MD simulation, and thermodynamic values were discussed and integrated with spectroscopic and computational results. The 3D complexes involving SeDG when interacting with Gal-1 and Gal-3 were depicted. Overall, the collected results will help identify hot spots for the design of new, better performing, and more specific Gal inhibitors.


Assuntos
Proteínas Sanguíneas/metabolismo , Galectina 1 , Galectina 3 , Galectinas/metabolismo , Carboidratos , Galectina 1/metabolismo , Galectina 3/metabolismo , Humanos , Termodinâmica
4.
Pharmaceutics ; 14(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35336001

RESUMO

Photodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nanoparticles (CPNs) as efficient photosensitizers for the photo-eradication of different cancer cells. With the aim of improving the selectivity of PDT with CPNs, the nanoparticle surface conjugation with unique 2'-Fluoropyrimidines-RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells was proposed and designed. A coupling reaction with carbodiimide was used to covalently bind NH2-modified aptamers with CPNs synthetized with two polystyrene-based polymer donors of COOH groups for the amide reaction. The selectivity of recognition for TNBC membrane receptors and PDT efficacy were assayed in TNBC cells and compared with non-TNBC cells by flow cytometry and cell viability assays. Furthermore, in vitro PDT efficacy was assayed in different TNBC cells with significant improvement results using CL4, sTN29 and sTN58 aptamers compared to unconjugated CPNs and SCR non-specific aptamer. In a chemoresistance TNBC cell model, sTN58 was the candidate for improving labelling and PDT efficacy with CPNs. We proposed sTN58, sTN29 and CL4 aptamers as valuable tools for selective TNBC targeting, cell internalization and therapeutic improvements for CPNs in PDT protocols.

5.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269724

RESUMO

Galectins are soluble ß-D-galactoside-binding proteins whose implication in cancer progression and disease outcome makes them prominent targets for therapeutic intervention. In this frame, the development of small inhibitors that block selectively the activity of galectins represents an important strategy for cancer therapy which is, however, still relatively underdeveloped. To this end, we designed here a rationally and efficiently novel diglycosylated compound, characterized by a selenoglycoside bond and the presence of a lipophilic benzyl group at both saccharide residues. The relatively high binding affinity of the new compound to the carbohydrate recognition domain of two galectins, galectin 3 and galectin 9, its good antiproliferative and anti-migration activity towards melanoma cells, as well as its anti-angiogenesis properties, pave the way for its further development as an anticancer agent.


Assuntos
Galectina 3 , Selênio , Carboidratos , Galectina 3/metabolismo , Galectinas/metabolismo , Selênio/farmacologia
6.
Bioorg Chem ; 122: 105680, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248981

RESUMO

The lipid phosphatase Ship2 binds the EphA2 receptor through a heterotypic Sam-Sam (Sterile alpha motif) interaction. Inhibitors of the Ship2-Sam/EphA2-Sam complex hold a certain potential as novel anticancer agents. The previously reported "KRI3" peptide binds Ship2-Sam working as a weak antagonist of the EphA2-Sam/Ship2-Sam interaction. Herein, the design and functional evaluation of KRI3 analogues, both linear and cyclic, are described. A multidisciplinary study was conducted through computational docking techniques, and conformational analyses by CD and NMR spectroscopies. The ability of new peptides to bind Ship2-Sam was analysed by NMR, MST and SPR assays. Studies on linear KRI3 analogues pointed out that aromatic interactions through tyrosines are important for the association with Ship2-Sam whereas, an increase of the net positive charge of the sequence or peptide cyclization through a disulfide bridge can favour unspecific interactions without a substantial improvement of the binding affinity to Ship2-Sam. Interestingly, preliminary cell-based assays demonstrated KRI3 cellular uptake even without the conjugation to a cell penetrating sequence with a main cytosolic localization. This work highlights important features of the KRI3 peptide that can be further exploited to design analogues able to hamper Sam-Sam interactions driven by electrostatic contacts.


Assuntos
Receptor EphA2 , Motivo Estéril alfa , Ligantes , Espectroscopia de Ressonância Magnética , Peptídeos/química , Receptor EphA2/química
7.
EMBO J ; 40(10): e106503, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33934390

RESUMO

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Oryzias , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Front Chem ; 9: 638187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996744

RESUMO

Plant extracts are rich in bioactive compounds, such as polyphenols, sesquiterpenes, and triterpenes, which potentially have antiviral activities. As a consequence of the coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, thousands of scientists have been working tirelessly trying to understand the biology of this new virus and the disease pathophysiology, with the main goal of discovering effective preventive treatments and therapeutic agents. Plant-derived secondary metabolites may play key roles in preventing and counteracting the rapid spread of SARS-CoV-2 infections by inhibiting the activity of several viral proteins, in particular those involved in the virus entry into the host cells and its replication. Using in vitro approaches, we investigated the role of a pomegranate peel extract (PPE) in attenuating the interaction between the SARS-CoV-2 Spike glycoprotein and the human angiotensin-converting enzyme 2 receptor, and on the activity of the virus 3CL protease. Although further studies will be determinant to assess the efficacy of this extract in vivo, our results opened new promising opportunities to employ natural extracts for the development of effective and innovative therapies in the fight against SARS-CoV-2.

9.
Sci Rep ; 10(1): 8943, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488029

RESUMO

Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pKa (8.1 ± 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pKa value (7.5 ± 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present.


Assuntos
Proteínas Arqueais/metabolismo , Quimotripsinogênio/metabolismo , Glutationa/metabolismo , Sequência de Aminoácidos , Archaea/metabolismo , Quimotripsinogênio/fisiologia , Cisteína/metabolismo , Dissulfetos/química , Glutationa/fisiologia , Dissulfeto de Glutationa/metabolismo , Oxirredução , Oxirredutases/metabolismo , Dobramento de Proteína , Compostos de Sulfidrila/química , Reagentes de Sulfidrila/química , Sulfolobus solfataricus/metabolismo
10.
Chembiochem ; 21(5): 702-711, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31538690

RESUMO

Sterile alpha motif (SAM) domains are protein interaction modules with a helical fold. SAM-SAM interactions often adopt the mid-loop (ML)/end-helix (EH) model, in which the C-terminal helix and adjacent loops of one SAM unit (EH site) bind the central regions of another SAM domain (ML site). Herein, an original strategy to attack SAM-SAM associations is reported. It relies on the design of cyclic peptides that target a region of the SAM domain positioned at the bottom side of the EH interface, which is thought to be important for the formation of a SAM-SAM complex. This strategy has been preliminarily tested by using a model system of heterotypic SAM-SAM interactions involving the erythropoietin-producing hepatoma kinase A2 (EphA2) receptor and implementing a multidisciplinary plan made up of computational docking studies, experimental interaction assays (by NMR spectroscopy and surface plasmon resonance techniques) and conformational analysis (by NMR spectroscopy and circular dichroism). This work further highlights how only a specific balance between flexibility and rigidity may be needed to generate modulators of SAM-SAM interactions.


Assuntos
Peptídeos Cíclicos , Receptor EphA2/metabolismo , Motivo Estéril alfa , Humanos , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Ligação Proteica , Conformação Proteica
11.
Front Mol Neurosci ; 12: 195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467503

RESUMO

Cystatin B (CSTB) is a ubiquitous protein belonging to a superfamily of protease inhibitors. CSTB may play a critical role in brain physiology because its mutations cause progressive myoclonic epilepsy-1A (EPM1A), the most common form of progressive myoclonic epilepsy. However, the molecular mechanisms underlying the role of CSTB in the central nervous system (CNS) are largely unknown. To investigate the possible involvement of CSTB in the synaptic plasticity, we analyzed its expression in synaptosomes as a model system in studying the physiology of the synaptic regions of the CNS. We found that CSTB is not only present in the synaptosomes isolated from rat and mouse brain cortex, but also secreted into the medium in a depolarization-controlled manner. In addition, using biorthogonal noncanonical amino acid tagging (BONCAT) procedure, we demonstrated, for the first time, that CSTB is locally synthesized in the synaptosomes. The synaptic localization of CSTB was confirmed in a human 3D model of cortical development, namely cerebral organoids. Altogether, these results suggest that CSTB may play a role in the brain plasticity and open a new perspective in studying the involvement of CSTB deregulation in neurodegenerative and neuropsychiatric diseases.

12.
Carbohydr Res ; 482: 107740, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302458

RESUMO

A mini-library of symmetrical and unsymmetrical diglycosyl (di)sulfides, containing d-galactose, l-fucose and N-acetyl glucosamine units, were synthesized and tested for the antiproliferative activity against cervix carcinoma (HeLa) and melanoma (A375) tumor cell lines as well as healthy fibroblasts (HDF). Comparative analysis of results seems to indicate that the most relevant antiproliferative effect is not primarily influenced by interactions with galectins, as the most cytotoxic compound observed for HeLa and A375 is not a ligand for such receptors. The most active molecules against HeLa and A375 lines also exhibited a good selectivity, showing a low toxicity to HDF cells. Obtained results offer useful indications for future design of structurally simple antitumor molecules based on sugar moieties with bridging sulfur atoms.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Açúcares/química , Sulfetos/síntese química , Sulfetos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Glicosilação , Células HeLa , Humanos , Sulfetos/química
13.
Sci Rep ; 9(1): 9184, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235717

RESUMO

In this paper, we report studies concerning thrombin binding aptamer (TBA) dimeric derivatives in which the 3'-ends of two TBA sequences have been joined by means of linkers containing adenosine or thymidine residues and/or a glycerol moiety. CD and electrophoretic investigations indicate that all modified aptamers are able to form G-quadruplex domains resembling that of the parent TBA structure. However, isothermal titration calorimetry measurements of the aptamer/thrombin interaction point to different affinities to the target protein, depending on the type of linker. Consistently, the best ligands for thrombin show anticoagulant activities higher than TBA. Interestingly, two dimeric aptamers with the most promising properties also show far higher resistances in biological environment than TBA.


Assuntos
Antitrombinas/química , Aptâmeros de Nucleotídeos/química , Quadruplex G , Trombina/química , Ligantes , Modelos Moleculares , Ligação Proteica
14.
FEBS J ; 286(13): 2505-2521, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30955232

RESUMO

About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.


Assuntos
Proteínas de Homeodomínio/química , Multimerização Proteica , Fatores de Transcrição/química , Motivos de Aminoácidos , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Peptídeos/química , Peptídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Bioorg Chem ; 84: 434-443, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576907

RESUMO

EphA2 receptor plays a critical and debatable function in cancer and is considered a target in drug discovery. Lately, there has been a growing interest in its cytosolic C-terminal SAM domain (EphA2-SAM) as it engages protein modulators of receptor endocytosis and stability. Interestingly, EphA2-SAM binds the SAM domain from the lipid phosphatase Ship2 (Ship2-SAM) mainly producing pro-oncogenic outcomes. In an attempt to discover novel inhibitors of the EphA2-SAM/Ship2-SAM complex with possible anticancer properties, we focused on the central region of Ship2-SAM (known as Mid-Loop interface) responsible for its binding to EphA2-SAM. Starting from the amino acid sequence of the Mid-Loop interface virtual peptide libraries were built through ad hoc inserted mutations with either l- or d- amino acids and screened against EphA2-SAM by docking techniques. A few virtual hits were synthesized and experimentally tested by a variety of direct and competition-type interaction assays relying on NMR (Nuclear Magnetic Resonance), SPR (Surface Plasmon Resonance), MST (Microscale Thermophoresis) techniques. These studies guided the discovery of an original EphA2-SAM ligand antagonist of its interaction with Ship2-SAM.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Peptídeos/química , Receptor EphA2/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Peptídeos/sangue , Peptídeos/metabolismo , Estabilidade Proteica , Receptor EphA2/metabolismo , Motivo Estéril alfa
16.
Bioorg Chem ; 80: 602-610, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036816

RESUMO

Sam (Sterile alpha motif) domains represent small helical protein-protein interaction modules which play versatile functions in different cellular processes. The Sam domain from the EphA2 receptor binds the Sam domain of the lipid phosphatase Ship2 and this interaction modulates receptor endocytosis and degradation primarily generating pro-oncogenic effects in cell. To identify molecule antagonists of the EphA2-Sam/Ship2-Sam complex with anti-cancer activity, we focused on hydrocarbon helical stapled peptides. EphA2-Sam and one of its interactors (i.e., the first Sam domain of the adaptor protein Odin) were used as model systems for peptide design. Increase in helicity in the stapled peptides, with respect to the corresponding linear/native-like regions, was proved by structural studies conducted through CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance). Interestingly, interaction assays by means of NMR, SPR (Surface Plasmon Resonance) and MST (MicroScale Thermophoresis) techniques led to the discovery of a novel ligand of Ship2-Sam.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptor EphA2/metabolismo , Sequência de Aminoácidos , Descoberta de Drogas , Humanos , Modelos Moleculares , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Ligação Proteica/efeitos dos fármacos , Receptor EphA2/química , Motivo Estéril alfa/efeitos dos fármacos
17.
Brain ; 141(5): 1300-1319, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490009

RESUMO

Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-ß signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-ß activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-ß/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.10.1093/brain/awy039_video1awy039media15742053534001.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Meduloblastoma/metabolismo , Metástase Neoplásica/fisiopatologia , PTEN Fosfo-Hidrolase/metabolismo , Adolescente , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Lactente , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Metástase Neoplásica/genética , PTEN Fosfo-Hidrolase/genética , Monoéster Fosfórico Hidrolases , Pirimidinonas/química , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Biochim Biophys Acta Gen Subj ; 1862(3): 377-384, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29174954

RESUMO

BACKGROUND: Specific apolipoprotein A-I variants are associated to severe hereditary amyloidoses. The organ distribution of AApoAI amyloidosis seems to depend on the position of the mutation, since mutations in residues from 1 to 75 are mainly associated to hepatic and renal amyloidosis, while mutations in residues from 173 to 178 are mostly responsible for cardiac, laryngeal, and cutaneous amyloidosis. Molecular bases of this tissue specificity are still poorly understood, but it is increasingly emerging that protein destabilization induced by amyloidogenic mutations is neither necessary nor sufficient for amyloidosis development. METHODS: By using a multidisciplinary approach, including circular dichroism, dynamic light scattering, spectrofluorometric and atomic force microscopy analyses, the effect of target cells on the conformation and fibrillogenic pathway of the two AApoAI amyloidogenic variants AApoAIL75P and AApoAIL174S has been monitored. RESULTS: Our data show that specific cell milieus selectively affect conformation, aggregation propensity and fibrillogenesis of the two AApoAI amyloidogenic variants. CONCLUSIONS: An intriguing picture emerged indicating that defined cell contexts selectively induce fibrillogenesis of specific AApoAI variants. GENERAL SIGNIFICANCE: An innovative methodological approach, based on the use of whole intact cells to monitor the effects of cell context on AApoAI variants fibrillogenic pathway, has been set up.


Assuntos
Amiloide/metabolismo , Amiloidose Familiar/metabolismo , Apolipoproteína A-I/metabolismo , Amiloide/ultraestrutura , Amiloidose Familiar/genética , Apolipoproteína A-I/genética , Linhagem Celular , Dicroísmo Circular , Difusão Dinâmica da Luz , Células Hep G2 , Humanos , Microscopia de Força Atômica , Mutação , Proteólise , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
19.
Sci Rep ; 7(1): 17474, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234063

RESUMO

The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.


Assuntos
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptor EphA2/antagonistas & inibidores , Receptor EphA2/metabolismo , Motivo Estéril alfa , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Desenho de Fármacos , Escherichia coli , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas de Membrana , Modelos Moleculares , Necrose/induzido quimicamente , Necrose/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/farmacologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Dados Preliminares , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ligação Proteica , Receptor EphA2/química , Receptor EphA2/genética , Proteínas de Saccharomyces cerevisiae , Motivo Estéril alfa/efeitos dos fármacos
20.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1095-1104, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28602916

RESUMO

Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short ß-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains.


Assuntos
Receptor EphA2/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Catarata/genética , Dicroísmo Circular , Humanos , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Insercional , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Recombinantes de Fusão/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA